

AJ010

User’s Guide

Version 2.04

March 4, 2005

Atmark Techno Co., Ltd.
http://www.atmark-techno.com/

Armadillo Official Web-Site

http://armadillo.atmark-techno.com/

http://www.atmark-techno.com/
http://armadillo.atmark-techno.com/

Armadillo-J User’s Guide ver.2.04

Table of Contents

1. Introduction ... 1

1.1. About This Manual ... 1
1.2. Typographical Conventions.. 1
1.3. Conventions in Command Input Examples .. 1
1.4. Trademarks.. 1
1.5. Acknowledgements.. 2

2. Safety Precautions .. 3
2.1. Safety Precautions... 3
2.2. Operational Precautions... 3
2.3. Software Related Precautions.. 3

3. Overview of Armadillo-J .. 4
3.1. Features... 4
3.2. Functions and Application Examples ... 4

3.2.1. Device Control via Network.. 4
3.2.2. Linux Terminal.. 4
3.2.3. Development of Original Embedded Devices .. 4

4. Before Getting Started... 5
4.1. Preparations... 5
4.2. Connections ... 5

5. Rewriting Flash Memory.. 6
5.1. Installing the Downloader... 6
5.2. Rewriting Procedure .. 6

5.2.1. Setting Jumper Pins... 6
5.2.2. Downloading a Rewriting Image .. 7

6. Getting Started .. 9
6.1. Before Booting ... 9
6.2. Booting... 10
6.3. Directory Structure ... 12
6.4. Saving Data ... 12
6.5. Exiting .. 13
6.6. Network Settings.. 13

6.6.1. Using a Fixed IP Address... 13
6.6.2. Using DHCP .. 14

6.7. telnet Login .. 14
6.8. File Transfer ... 14
6.9. Web Server .. 14

7. Preparing Development Environment.. 15
7.1. Installing the Tool Chain ... 15
7.2. Configuring Environment Variables.. 15
7.3. Preparing Source Code.. 15

8. Image Creation with uClinux-dist... 16
8.1. Work Flow .. 16
8.2. Menuconfig .. 18

8.2.1. Main Menu ... 18
8.2.2. Target Platform Selection Menu... 19

8.3. Building .. 21
9. uClinux-dist Configuration ... 22

9.1. Changing Kernel Settings .. 22
9.2. Customizing Userland Settings .. 22

10. Creating Your Own Application... 25
10.1. Creating a Directory ... 25
10.2. Creating a Makefile .. 26
10.3. C Source Code .. 27
10.4. Compiling ... 27

i

Armadillo-J User’s Guide ver.2.04

10.5. Installing to the ROMFS Directory.. 27
10.6. Creating/Executing the Image File ... 28

11. Flat Binary Format.. 29
11.1. Features of the Flat Binary Format .. 29
11.2. Compressing an Executable File ... 29

11.2.1. Compressing a Compiled Binary File... 29
11.2.2. Compression at Compiling... 30

11.3. Specifying Stack Size... 31
11.3.1. Changing the Stack Size of a Compiled Binary File ... 31
11.3.2. Specifying Stack Size at Compiling.. 31

12. Troubleshooting ... 33
12.1. The Armadillo-J Doesn’t Boot Properly .. 33
12.2. Restoring Default Settings ... 33

13. Appendix .. 34
13.1. Building a Development Environment in Windows... 34

13.1.1. Installing coLinux ... 34
13.1.2. Preparing Files for Building Environment... 34
13.1.3. Running coLinux .. 34
13.1.4. Network Settings.. 34
13.1.5. Creating a coLinux User .. 35
13.1.6. File Sharing between Windows and coLinux ... 35
13.1.7. Introducing a Cross Development Environment... 36
13.1.8. Windows Network Setup Under Special Circumstances.. 36
13.1.9. coLinux Network Configuration .. 36

13.2. About The Base Image .. 39
13.2.1. Memory Map of The Base Image... 39
13.2.2. Command List.. 41
13.2.3. Startup Daemon List .. 41

13.3. Original Device Driver Specifications ... 42
13.3.1. Parallel Port Driver... 42
13.3.2. LED Control Driver... 44

13.4. URL List ... 46

ii

Armadillo-J User’s Guide ver.2.04

List of Tables

Table 1-1 Fonts ... 1
Table 1-2 Relationship between Prompt and Execution Environment ... 1
Table 5-1 Action Corresponding to Each Jumper Setting .. 7
Table 5-2 Example of Parameters When Using Hermit for WIN32 .. 8
Table 6-1 Serial Communication Settings ... 9
Table 6-2 User Name and Password for Log into the Serial Console...11
Table 6-3 Structure of Directory... 12
Table 6-4 Writing Attributes ... 12
Table 6-5 Details of Network Setting ... 13
Table 6-6 User Name and Password for telnet Login .. 14
Table 6-7 User Name and Password for FTP.. 14
Table 13-1 Network Settings ... 37
Table 13-2 Memory Map (Flash Memory Devices: AM29LV160DB, MBM29LV160BE)......................... 39
Table 13-3 Memory Map (Flash Memory Device: M29W160EB)... 40
Table 13-4 Memory Map (RAM) .. 40
Table 13-5 Command List ... 41
Table 13-6 Startup Daemon List .. 41
Table 13-7 Parallel Port List .. 42
Table 13-8 LED Device Node Parameters .. 44
Table 13-9 Written Data and Corresponding State .. 44
Table 13-10 Read Data and Corresponding State... 44

List of Figures

Figure 4-1 Connecting Armadillo-J and Work PC·· 5
Figure 5-1 Example of Expand Command ·· 6
Figure 5-2 Jumper Position ··· 7
Figure 5-3 Command Input Example ·· 7
Figure 6-1 Startup Log ···11
Figure 6-2 Example of Save Data Command (killall -USR1 flatfsd) ·· 13
Figure 6-3 Example of Network Settings (Fixed IP Address)··· 13
Figure 6-4 Example for Network Setting (by DHCP) ··· 14
Figure 7-1 Example of Expanding Development Tool Chain ··· 15
Figure 7-2 Setting the PATH Environment Variable (bash)··· 15
Figure 7-3 Example of Expanding Source Code ··· 15
Figure 8-1 Work Flow for Creating an Image File·· 17
Figure 8-2 uClinux v3.1.0 Configuration Main Menu ··· 19
Figure 8-3 Target Platform Selection··· 19
Figure 8-4 Target Platform Selection··· 20
Figure 8-5 Selecting Default all setting·· 21
Figure 9-1 Userland Main Menu·· 22
Figure 13-1 URL List ··· 46

iii

Armadillo-J User’s Guide ver.2.04

1. Introduction

1.1. About This Manual

This manual provides the following information necessary for using the Armadillo-J.

z Rewriting Flash Memory

z Basic Operation

z Kernel and Userland Building

z Application Development

We hope the information contained in this document will help you get the best functionality out of the

Armadillo-J.

1.2. Typographical Conventions

The following font conventions are used in this document.

Table 1-1 Fonts

Font Description
Font in text Text

[PC ~]$ ls
Prompt and user input character strings
Command names
Directory and file names

1.3. Conventions in Command Input Examples

The command input examples contained in this manual are based on the assumed execution
environment associated with the respective display prompt. The directory part “/” will differ depending on
the current directory. The home directory of each user is represented by “~”.

Table 1-2 Relationship between Prompt and Execution Environment

Prompt Command Execution Environment
[PC /]# Executed by privileged user on work PC
[PC /]$ Executed by general user on work PC
[AJ /]# Executed by privileged user on Armadillo-J
[AJ /]$ Executed by general user on Armadillo-J

1.4. Trademarks

Armadillo is a registered trademark of Atmark Techno, Inc.
Other company and product names in this document are either trademarks or registered trademarks of

their respective company or organization.

1

Armadillo-J User’s Guide ver.2.04

1.5. Acknowledgements

The software used in the Armadillo-J consists of Free Software and Open Source Software. They are the
achievements of many developers from around the world. We would like to take this opportunity to thank all
these developers.

uClinux is supported by the achievements of D. Jeff Dionne, Greg Ungerer, David McCullough and all of

the people participating in the uClinux development list.

uClibc and Busybox have been developed and are maintained by Eric Andersen.

2

Armadillo-J User’s Guide ver.2.04

2. Safety Precautions
2.1. Safety Precautions

Before using the Armadillo-J, read the following safety precautions carefully to assure correct use.

This product uses the semiconductor components designed for generic electronics
equipment such as office automation equipment, communications equipment, measurement
equipment and machine tools. Do not incorporate this product into devices such as medical
equipment, traffic control systems, combustion control systems, safety equipment, etc. which
can directly threaten human life or pose a hazard to the body or property due to malfunction
or failure. Moreover, those products incorporating semiconductor components can be
caused to malfunction or fail due to foreign noise or surge. To ensure there will be no risk to
life, the body or property even in the event of malfunction or failure, be sure to take all
possible measures in the safety system design, such as using protection circuits like limit
switches or fuse breakers, or system multiplexing.

2.2. Operational Precautions

To avoid degradation, damage, malfunction or fire, the following operational precautions must be
observed when handling the product.

z Power-On:

While the Armadillo-J and peripheral circuits are turned on, be sure not to connect or disconnect any
expansion I/O connectors.

z Static Electricity:

The Armadillo-J incorporates CMOS devices. Until it is used, store it safely in the provided antistatic
package.

z Interfaces:

 Do not connect signals other than specified to each interface (external I/O, RS232C or Ethernet).
Use caution in polarity and input/output direction

z Impact/Vibration:
 Do not apply an excessive impact such as a drop or collision.

Do not put the product on anything vibrating and/or rotating. Do not apply strong vibration or
centrifugal force.

z Excessive High/Low Temperatures and High Humidity:

 Do not use the product in environments where it would be subject to excessive high/low
temperatures or high humidity.

z Dust:

 Do not use the product in dusty areas.

2.3. Software Related Precautions

The software and documentation contained in this product are provided “AS IS” without warranty of any
kind including any warranty of merchantability or fitness for a particular purpose, reliability, or accuracy.
Furthermore, Atmark Techno does not guarantee any outcomes resulting from the use of this product.

3

Armadillo-J User’s Guide ver.2.04

3. Overview of Armadillo-J

 At only half the size of a credit card, the Armadillo-J is an Ethernet-enabled ultra compact network
computer board employing a 32-bit ARM processor (NetSilicon NS7520).

3.1. Features

z Linux:
The Armadillo-J uses Linux (µCLinux Kernel 2.4.22 based) as its standard OS, providing a wide range
of software resources and proven operational stability. Additionally, utilizing the GNU development
environment facilitates a smooth development process.

z Network (Ethernet):
The Armadillo-J supports 10Base-T/100Base-Tx based communication.

z Serial Port:

The Armadillo-J provides a RS-232C (D-sub 9) compliant serial port for connection with serial devices
at a data rate of 600bps to 230,400bps.

z General Purpose Parallel I/O (GPIO)

The Armadillo-J provides a general purpose parallel I/O (5-pin) to control external devices

3.2. Functions and Application Examples
3.2.1. Device Control via Network

The Armadillo-J has the following functionality at shipment:
Serial – Ethernet Conversion •

•

•
•
•

GPIO Control via Network
These functions can be used “as is” for device control via network.
For more information, refer to the Startup Guide.

3.2.2. Linux Terminal

The Armadillo-J can be used as a standard Linux terminal by writing the base image contained in the
supplied CD to the Armadillo-J.

The following applications run on the base image:
telnet
ftp server
Web server

For more information, refer to Section 5, “Rewriting Flash Memory” and Section 6, “Getting Started.”

3.2.3. Development of Original Embedded Devices

Being able to use the GNU development environment and open source code, a developer can easily
develop an original embedded device by customizing the Armadillo-J. For more information, refer to
Section 10, “Creating Your Own Application.”

4

Armadillo-J User’s Guide ver.2.04

4. Before Getting Started

4.1. Preparations

Please make the following preparations before using the Armadillo-J.

z PC

One Linux or Windows PC that has one or more serial ports.

z Serial Cross Cable

One D-Sub9-pin (male-male) cable for cross connection.

z Development Kit, Supplied CD-ROM (hereafter called the “supplied CD”)

The supplied CD contains various manuals and source code for the Armadillo-J.

z Serial Console Software

A serial console program such as minicom or Tera Term (Linux software is contained in the supplied
CD in the “tools” directory).

z AC Adapter

A DC8 to 48V output AC adapter (power consumption of the Armadillo-J is 1.2W).

4.2. Connections

Connect the Armadillo-J and the PC using a serial cross cable as shown in Figure 4-1.

Serial Communication Software

hermit>

PWR

STS

Serial Cross Cable

LAN Cable

AC Adapter

AT Compatible （OS： Linux）

Figure 4-1 Connecting Armadillo-J and Work PC

 5

Armadillo-J User’s Guide ver.2.04

5. Rewriting Flash Memory

The functionality of the Armadillo-J can be altered by rewriting the flash memory. This chapter explains how
to rewrite the flash memory by giving an example of writing a “base image” which allows the Armadillo-J to
function as a Linux terminal.

If the downloading of the image fails for any reason, the Armadillo-J may not boot

normally. Be careful of the following points when performing a rewriting.
•
•

•
•
•

Do not power off the Armadillo-J.
Do not disconnect the serial cable connecting the Armadillo-J to the Work PC.

If the Armadillo-J cannot be booted normally, refer to Section 12.1, “The Armadillo-J
Doesn’t Boot Properly.”

5.1. Installing the Downloader

Install the downloader (hermit) on the PC. The downloader is used to rewrite the Armadillo-J flash
memory.

1) Linux:

 Expand the tools/hermit-1.3-armadillo.tgz file contained in the supplied CD. This must be
done by a user with root privileges.

[PC ~]# tar xzvf hermit-1.3-armadillo.tgz -C /

Figure 5-1 Example of Expand Command
The supplied CD also contains rpm (Red Hat package) and deb (Debian package) versions. Select

the one suitable for your OS.

2) Windows:
Expand Hermit host for Win32 (tools/hermit-1.3-armadillo-4_win32.zip) contained in the

supplied CD to an appropriate folder.

5.2. Rewriting Procedure

Rewrite the flash memory according to the following procedure.

5.2.1. Setting Jumper Pins

Before power-on, set jumper pins as follows:
JP1: Set to “Short”
JP2&3: Set according to user environment (if no connection is made to GPIO, set to “Short”).
JP4: Set to “Short”

6

Armadillo-J User’s Guide ver.2.04

JP Number

1 2 3 4

Figure 5-2 Jumper Position

Table 5-1 Action Corresponding to Each Jumper Setting

Setting Short (Close) Open
JP1 Connects network module to TXD/RXD of

the serial interface.
Disconnects network module from
TXD/RXD of the serial interface.

JP2 Connects network module to CTS/RTS of
the serial interface.

Disconnects network module from
CTS/RTS of the serial interface.

JP3 Connects network module to
DTR/DSR/DCD of the serial interface.

Disconnects network module from
DTR/DSR/DCD of the serial interface.

JP4 Boots in rewriting mode Boots in normal mode

5.2.2. Downloading a Rewriting Image

1) Linux:

Activate a terminal on the Linux PC and then enter the hermit command.
A base image (base.img) is specified as the file name in Figure 5-3.

Figure 5-3 Example of Command Entry

[PC ~]# hermit download -i base.img -r user

Command specification Region specification File name

Figure 5-3 Command Input Example

If the serial port on the work PC is something other than ttyS0, add the [--port “port name”]

option.

When the rewriting completes, serial : completed xxxxxxxx (xxxxxxxx) will be displayed on

the screen.
Once it has completed, set JP4 to Open and reboot the Armadillo-J to activate the base image.

7

Armadillo-J User’s Guide ver.2.04

2) Windows:
Start Hermit host for Win32 which was expanded in Section 5.1, “Installing a Downloader”.

Set the parameters according to Table 5-2.

Table 5-2 Example of Parameters When Using Hermit for WIN32

Parameter Description Setting Value
Port Name of a port connecting to the Armadillo-J COM1 (when using COM1)

Input file Name of a target file for rewriting base.img
(include path name)

Region Specification of a writing area user (fixed)

Figure 5-4 Example of Downloading a Rewriting Image

When the rewriting completes, “serial : completed xxxxxxxx (xxxxxxxx)” will be displayed on the screen.
Once it has completed, set JP4 to Open and reboot the Armadillo-J to activate the base image.

8

Armadillo-J User’s Guide ver.2.04

6. Getting Started

The supplied CD contains three different flash memory images in the image directory. They each have a

different functionality.

z Recovery Image (recover.img)

This is the image already written to the flash memory at the time of purchase. It provides Serial-Ethernet
Conversion, GPIO Control via Network and so on. You can restore the Armadillo-J to its default state by
writing this image to the flash memory. For information on how to use this image, refer to the Startup
Guide.

z Base Image (base.img)

This image is used as a basis for application development. It provides telnet, ftp and Web server
functionality. You can log into the Armadillo-J via serial port or network.

z JFFS2 Image (jffs2.img)

This image provides a file system that allows the user to save all modified files. It has the same
functionality as the base image.

This section describes how to use the base image. For the base image memory map and command list,

refer to 13.2, “About The Base Image.”

6.1. Before Booting

If the base image is not yet written to the flash memory, write the base image to the flash memory first
according to the procedure described in Chapter 5, “Rewriting Flash Memory.”
Connect the Armadillo-J to the PC using a serial cable and start the serial console program. Serial

communication settings are shown in Table 6-1.

Table 6-1 Serial Communication Settings

Parameter Setting
Download Rate 115,200bps
Data Length 8bit
Stop Bit 1bit
Parity None
Flow Control None

9

Armadillo-J User’s Guide ver.2.04

6.2. Booting

To boot the base image, set JP4 to Open and turn the Armadillo-J on.
When the Armadillo-J successfully boots, the following startup log is generated.

Copying kernel...done.
Linux version 2.4.22-uc0-aj1 (somebody@colinux) (gcc version 2.95.3 20010315
(release)(ColdFire patches - 20010318 from
http://fiddes.net/coldfire/)(uClinux XIP and shared lib patches from
http://www.snapgear.com/)) #1 Tue Jun 8 05:13:34 UTC 2004
Processor: ARM/VLSI ARM 7 TDMI revision 0
Architecture: NET+ARM
fixup_netarm: Kernel memory start 0x00000000 end 0x000ea000
On node 0 totalpages: 2048
zone(0): 0 pages.
zone(1): 2048 pages.
zone(2): 0 pages.
Kernel command line: root=/dev/rom0
setup_timer : T2 CTL = D0000008
setting up timer IRQ
Calibrating delay loop... 8.93 BogoMIPS
Memory: 8MB = 8MB total
Memory: 6288KB available (728K code, 1072K data, 36K init)
Dentry cache hash table entries: 1024 (order: 1, 8192 bytes)
Inode cache hash table entries: 512 (order: 0, 4096 bytes)
Mount cache hash table entries: 512 (order: 0, 4096 bytes)
Buffer cache hash table entries: 1024 (order: 0, 4096 bytes)
Page-cache hash table entries: 2048 (order: 1, 8192 bytes)
POSIX conformance testing by UNIFIX
Linux NET4.0 for Linux 2.4
Based upon Swansea University Computer Society NET3.039
Initializing RT netlink socket
Starting kswapd
Net+ARM serial driver version 0.2 (2002-02-27) with CONSOLE enabled
ttyS00 at 0x0001 (irq = 15) is a NetARM
ttyS01 at 0x0002 (irq = 13) is a NetARM
ns7520port: port driver, (C) 2004 Atmark Techno, Inc.
Software Watchdog Timer: 0.05, timer margin: 60 sec
NS7520 Ethernet Driver Initialized
uclinux[mtd]: RAM probe address=0xe8b98 size=0xda000
uclinux[mtd]: root filesystem index=0
Initializing Armadillo-J MTD mappings
 Amd/Fujitsu Extended Query Table v1.0 at 0x0040
number of CFI chips: 1
cfi_cmdset_0002: Disabling fast programming due to code brokenness.
Creating 7 MTD partitions on "Flash":
0x00000000-0x00020000 : "Flash/Reserved"
0x00020000-0x00040000 : "Flash/Hermit"
0x00040000-0x00200000 : "Flash/Image"
0x00040000-0x000b0000 : "Flash/Kernel"
0x000b0000-0x00200000 : "Flash/User"
0x001e0000-0x001f0000 : "Flash/Backup"
0x001f0000-0x00200000 : "Flash/Config"
NET4: Linux TCP/IP 1.0 for NET4.0
IP Protocols: ICMP, UDP, TCP
IP: routing cache hash table of 512 buckets, 4Kbytes
TCP: Hash tables configured (established 512 bind 512)
VFS: Mounted root (romfs filesystem) readonly.
init started: BusyBox v0.60.5 (2004.06.08-05:15+0000) multi-call binary
Mounting proc: done
Mounting var: done
Mounting /etc/config: done
Populating /etc/config: FLATFSD: created 6 configuration files (502 bytes)
Populating /var: done
Mounting /home/guest/pub: done

10

Armadillo-J User’s Guide ver.2.04

Setting hostname: done
Setting up interface lo: done
Running local start scripts.
Starting flatfsd: done
Setting up network: Starting DHCP for interface :
ns7520_eth: PHY (0x13, 0x78e2) = LXT971A detected
ns7520_eth: link mode 100 Mbps full duplex (auto)
done
Starting inetd: done
Starting thttpd: done
Setting local time: done
Starting ledctrl: done

aj login:

Figure 6-1 Startup Log

The base image supports the following two types of users.

Table 6-2 User Name and Password for Log into the Serial Console

User Name Password Privilege
root root Super User
guest guest General User

11

Armadillo-J User’s Guide ver.2.04

6.3. Directory Structure

The directory structure is shown in Table 6-3.

Table 6-3 Structure of Directory

Directory Name Write Description File System
/bin Applications
/dev Device nodes
/etc

×
System setting

romfs

 /etc/config ○ System settings (saved) ramfs
 /etc/default System settings restoration
/lib Common library
/mnt Mount point
/proc Process data
/root Root home directory
/sbin System management command
/usr Common user data
/home

×

User home directory

romfs

/home/guest/pub ftp data transmission and receive
/tmp Temporary storage
/var

�

Modified data

ramfs

Table 6-4 Writing Attributes

Mark Description
× Writing is not allowed.
� Writing is allowed. Data is not saved at power OFF/ON.
○ Writing is allowed. With flatfsd, data is saved even at power OFF/ON.

6.4. Saving Data

 In the base image, the /etc/config directory is used to save the system setting files.
This directory uses flatfsd, which enables modified data to be saved even after power off. flatfsd is

executed when the base image is booted.

z Saving data:

When the USR1 signal is sent to flatfsd, the data in the /etc/config directory is written to the setting
data area in the flash memory. The USR1 signal can be sent to the flatfsd by entering the command
killall -USR1 flatfsd. The setting data area in the flash memory is limited to 64kbytes.
Therefore, data exceeding this size cannot be saved.

z Restoring data:
When the command flatfsd –r is entered, the flatfsd reads data from the setting data area in the
flash memory and copies it to the /etc/config directory. In the base image the flatfsd –r
command is executed during system startup, thus setting data is automatically restored. If the data
written in the setting data area of the flash memory is not correct, copy the content of the
/etc/default directory to /etc/config.

12

Armadillo-J User’s Guide ver.2.04

If a system data file in the /etc/config directory (i.e. network settings) has been updated, enter the

command killall -USR1 flatfsd to save the data. This command must be executed by a user with
root privileges.

[Armadillo-J ~]# killall -USR1 flatfsd
[Armadillo-J ~]#

Figure 6-2 Example of Save Data Command (killall -USR1 flatfsd)

6.5. Exiting

The Armadillo-J can be shutdown by turning off the power. To modify the content of the /etc/config
directory for system settings and retain it at the next boot, issue the killall -USR1 flatfsd command
before shutting the Armadillo-J down.

6.6. Network Settings

Network settings can be modified by editing the /etc/config/network file within the Armadillo-J. Be
sure to log into the Armadillo-J with root privileges when performing this task. vi can be used as the editor
for modification.

6.6.1. Using a Fixed IP Address

An example of settings for specifying a fixed IP address is shown in Table 6-5.

Table 6-5 Details of Network Setting

 Parameter Setting Value
IP Address 192.168.10.10
Netmask 255.255.255.0
Broadcast Address 192.168.10.255
Default Gateway 192.168.10.1

#!/bin/sh

PATH=/bin:/sbin:/usr/bin:/usr/sbin

ifconfig eth0 192.168.10.10 netmask 255.255.255.0 \

broadcast 192.168.10.255 up
route add default gw 192.168.10.1 eth0

Figure 6-3 Example of Network Settings (Fixed IP Address)

13

Armadillo-J User’s Guide ver.2.04

6.6.2. Using DHCP

An example of the network settings for obtaining an IP address using DHCP is shown in Figure 6-4.

#!/bin/sh

PATH=/bin:/sbin:/usr/bin:/usr/sbin

/bin/dhcpcd &

Figure 6-4 Example for Network Setting (by DHCP)

To retain the modified settings even after power-off, you need to issue the killall -USR1 flatfsd
command before exiting.

6.7. telnet Login

You can log into the system with the following user name and password. Root login is not allowed. If you
need root privileges for a task, login to the system as guest first and then change to root with the su
command.

Table 6-6 User Name and Password for telnet Login

User Name Password
guest guest

6.8. File Transfer

The Armadillo-J supports FTP file transfer. Login to the system with the following user name and
password. The home directory is /home/guest. Go to the /home/guest/pub directory to upload data.

Table 6-7 User Name and Password for FTP

User Name Password
guest guest

6.9. Web Server

A small HTTP server called thttpd is run which allows the user to browse the Armadillo-J from a Web
browser.

Data directory: /home/www
URL: http://(IP address of the Armadillo-J)/ (Example: http://192.168.0.100/)

14

Armadillo-J User’s Guide ver.2.04

7. Preparing Development Environment

The Armadillo-J allows for development on Linux or Windows.
If developing on Windows you will need coLinux, a utility that creates a Linux environment in Windows.

For information on how to install coLinux, refer to 13.1. “Building a Development Environment in Windows.”

7.1. Installing the Tool Chain

From the supplied CD, execute cross-dev/arm-elf-tools-20030314.sh. Be sure to execute
this with root privileges. The arm-elf-tools-20030314.sh is an installer for the development tool chain
that includes a compiler, binutils and uClibc libraries. The development tool chain is installed at
usr/local/bin.

[PC ~]# sh ./arm-elf-tools-20030314.sh

Figure 7-1 Example of Expanding Development Tool Chain

7.2. Configuring Environment Variables

To make the Development Tool Chain easier to use, you will need to add the directory that contains the
executables to the PATH environment variable. The method for doing this differs dependent on type of
shell. For more information, refer to your shell manual.
The following example is in bash.

[PC ~]$ export PATH=”$PATH:/usr/local/bin”
[PC ~]$ echo $PATH
/usr/bin:/bin:/usr/bin/X11:/usr/sbin:/sbin:/usr/local/bin
[PC ~]$

Figure 7-2 Setting the PATH Environment Variable (bash)

7.3. Preparing Source Code

At uClinux.org, all source code for the Kernel, libraries and applications are collectively distributed as the
Full Source Distribution under the file name uClinux-dist-YYYYMMDD.tar.gz. The Armadillo-J uses
uClinux-dist with some modifications. The uClinux-dist for the Armadillo-J is contained in the dist directory
on the supplied CD under the file name uClinux-dist.tar.gz.
uClinux-dist.tar.gz can be expanded to anywhere appropriate. For convenience, here it is

expanded to ~/.

[PC ~]$ gzip -cd uClinux-dist.tar.gz | tar xvf -
[PC ~]$ ls
uClinux-dist
[PC ~]$

Figure 7-3 Example of Expanding Source Code

15

Armadillo-J User’s Guide ver.2.04

8. Image Creation with uClinux-dist

This section shows how to create an image file for writing to flash memory using the installed

development tool chain and source code. uClinux-dist is designed to allow customization in the same way
as the Linux Kernel build-system. This will be specifically easy for developers who have experience in
compiling a Linux Kernel. Here, menuconfig is used for the example.

8.1. Work Flow

Figure 8-1 shows the work flow for creating an image file.

16

Armadillo-J User’s Guide ver.2.04

Figure 8-1 Work Flow for Creating an Image File

NO

YES

Start menuconfig
[PC ~/uClinux-dist]$ make menuconfig

Vendor/Product Selection
(Select AtmarkTechno/Armadillo-J.Base)

Default Settings Selection
Kernel Customization Selection

Userland Customization Selection

“Customize Kernel
Settings” selected?

Customization of Kernel

“Update Vender/User
Settings” selected?

Customization of Userland

Save settings and make Image
[PC ~/uClinux-dist]$ make dep
[PC ~/uClinux-dist]$ make

Image Complete
(image.bin)

Start

NO

YES

YES

“Default all settings”
Selected?

Settings returned to defaults

NO

17

Armadillo-J User’s Guide ver.2.04

The work process can be roughly divided into three areas; restoring defaults, kernel and userland.

If you select to default all settings, both the kernel and userland are returned to
default. In addition, all work done before selecting the default all settings is
discarded. Therefore, take care when selecting this.

8.2. Menuconfig

As with the Linux kernel, the uClinux-dist build system allows the use of config, menuconfig and
xconfig. Here, uClinux-dist is built using menuconfig.

First go to the uClinux-dist directory expanded in 7.3, “Preparing Source Code” and then enter the make

menuconfig command.

Example 8-1 Executing the make menuconfig command

[PC ~]$ cd uClinux-dist
[PC ~/uClinux-dist]$ make menuconfig

In make menuconfig, a screen control program that requires the ncurses library is
compiled at the first execution. The ncurses library must therefore be pre-installed.
Dependant on the operating system, not only the ncurses library package but also the
development package for this library may also be required.

8.2.1. Main Menu

When the above command is entered, a screen as shown in Figure 8-2 appears. This is the uClinux-dist
main screen.

18

Armadillo-J User’s Guide ver.2.04

Figure 8-2 uClinux v3.1.0 Configuration Main Menu

In menuconfig, menu selection is made using the arrow keys on the keyboard. The “--->” mark at the

right side of a menu option means that you can move to that menu. When selecting a menu, make sure
that the “<select>” at the bottom of the screen is highlighted before pressing the enter key.

8.2.2. Target Platform Selection Menu

From the main menu select Target Platform Selection to move to that submenu screen.

Figure 8-3 Target Platform Selection

19

Armadillo-J User’s Guide ver.2.04

Place the cursor on (AtmarkTechno/Armadillo-J.Recover) Vendor/Product and press the
enter key to select other images. Here, the base image that runs as a Linux terminal will be created.

From the list, select Armadillo-J.Base.

Figure 8-4 Target Platform Selection

Select <Exit> with the arrow keys to return to the previous screen.

Then select Default all settings (lose changes). The [] mark at the right side of the menu

represents the state of selection. Move the cursor up or down with the arrow keys and make a selection
with the space bar. When the selection is made, the “*” mark will appear in the brackets.

20

Armadillo-J User’s Guide ver.2.04

Figure 8-5 Selecting Default all setting

After selecting Default all settings (lose changes), select <Exit> to return to the main menu.
When you select <Exit> in the main menu, you will be asked if you want to save the settings. Then
select <Yes> to save the settings.
A setting log appears on the screen and you will then return to the prompt.

8.3. Building

Actual compiling or creating an image file is called “building”. The make command is used for the build.
At the prompt, enter the following shown in Example 8-2.

Example 8-2 Build Command

[PC ~/uClinux-dist]$ make dep; make

The first make dep command is used to resolve the dependency of the Linux kernel. The command will

be familiar to those with experience compiling Linux Kernels up to version 2.4.

The next make command performs the entire build processes and finally creates an image file that can be
written to the flash memory. If the build process is successfully completed, an image.bin file will be created
under the uClinux-dist/images/ directory.

For information on how to write the created image file to the Armadillo-J, refer to Section 5. “Rewriting
Flash Memory.”

In this manual the image file refers to a binary file that combines the uClinux kernel and userland. Writing
this binary file to the flash memory with Hermit will make uClinux bootable on the Armadillo-J.

21

Armadillo-J User’s Guide ver.2.04

9. uClinux-dist Configuration

This chapter describes how to create a customized image using the uClinux-dist menu.

9.1. Changing Kernel Settings

To customize the Kernel, select Customize Kernel Settings from the Target Platform Selection of
uClinux Configuration. From this menu exit the uClinux v1.3.4 Configuration main menu to display the Linux
Kernel Configuration menu screen. The Linux Kernel Configuration itself is the same as the main version of
Linux.

When customization of the Kernel is completed, select <Exit>. When asked whether or not to save the
settings, select Yes.

If you do not need to customize userland, execute a build. For information on building, refer to section
8.3, “Building.”

9.2. Customizing Userland Settings

To customize userland, select Customize Vendor/User Settings from the Target Platform
Selection menu of uClinux Configuration. From this menu exit the uClinux v1.3.4 Configuration main menu
to display the userland main menu.

Figure 9-1 Userland Main Menu

The userland customization screen allows you to add applications provided by the uClinux Full Source
Distribution to the image, or to customize the applications to be added.

22

Armadillo-J User’s Guide ver.2.04

uClinux-dist has a collection of more than 150 applications. In the uClinux Configuration menu they are
classified into several categories.

y Core Applications

Core Applications contains the basic applications necessary for running as a system. This section
allows selection of init for system initialization and login for user authentication.

y Library Configuration

Library Configuration allows selection of libraries required by applications.

y Flash Tools

Flash Tools have a selection of applications associated with flash memory. In Armadillo-J.Base a
network update application called netflash is selected in this category.

y Filesystem Applications

Filesystem Applications have a selection of applications associated with the file system. In Armadillo-
J.Base flatfsd is selected. Others included are mount, fdisk, ext2 file system, reiser file system
and Samba.

y Network Applications

Network Applications have a selection of applications associated with networking. In addition to
dhcpcd-new, ftpd, ifconfig, inetd and thttpd used in Armadillo-J.Base, ppp and a wireless
network utility are also included.

y Miscellaneous Applications

Miscellaneous Applications include other applications not belonging to the above categories. Generic
Unix-based commands (cp, ls, rm, etc.), editors, audio-related programs, and script language
interpreters are also included.

y Busybox

Busybox can be customized here. Busybox is a single command having multiple command functions
and has a good track record in embedded Linux systems. Since Busybox provides many customization
functions, it is classified into a separate section.

y Tinylogin

The Tinylogin application also provides multiple command functions associated with authentication
such as login, passwd and getty. Since it provides many customization functions, it is classified
into a separate section.

y MicroWindows

MicroWindows is a graphical window environment targeted towards embedded equipment. It is well
suited to the development of LCD-based equipment.

y Games

These are games. No further explanation needed.

23

Armadillo-J User’s Guide ver.2.04

y Miscellaneous Configuration

Numerous configuration options are contained here.

y Debug Builds

Contains numerous debug options. This category is used when debugging applications during
development.

There is no guarantee that every application will run on all architectures. However, in most cases, they can
be run with minor modifications (at source code level or with the Makefile).

24

Armadillo-J User’s Guide ver.2.04

10. Creating Your Own Application

This section shows how to create the Hello World application and run it on the Armadillo-J. Compiling is

performed outside of the uClinux-dist package (this is called OTC: Out of Tree Compile).

Even if compiling is performed outside of uClinux-dist, since it uses the uClinux-dist supplied libraries and

the Makefile, a uClinux-dist directory previously built for the Armadillo-J is required. If not yet built, refer to
Chapter 8, “Image Creation with uCLinux” to build it.

Please observe the following precautions when running your own application on Armadillo-J.

When developing an application for controlling the I/O or serial ports, be sure to
properly set jumper pins, I/O port related registers and devices connecting to
an I/O port. Otherwise, this can cause malfunction or failure of equipment
when running the Armadillo-J. For information on jumper pins and I/O port
related registers, refer to the Hardware manual.

10.1. Creating a Directory

The directory to be used can be made anywhere. Here, ~/hello is used.

Example 10-1 Preparing a Directory for Hello World
[PC ~]$ mkdir hello
[PC ~]$

25

Armadillo-J User’s Guide ver.2.04

10.2. Creating a Makefile

A Makefile sample template is available in sample/hello/Makefile on the supplied CD. Copy this
file.

Example 10-2 Hello World Makefile

①

②

③

④

⑤

ifndef ROOTDIR
ROOTDIR=../uClinux-dist ----------------------------------
endif
ROMFSDIR = $(ROOTDIR)/romfs
ROMFSINST = romfs-inst.sh
PATH := $(PATH):$(ROOTDIR)/tools

UCLINUX_BUILD_USER = 1 -----------------------------------
include $(ROOTDIR)/.config
LIBCDIR = $(CONFIG_LIBCDIR)
include $(ROOTDIR)/config.arch

EXEC = hello ---
OBJS = hello.o ---

all: $(EXEC)

$(EXEC): $(OBJS)
 $(CC) $(LDFLAGS) -o $@ $(OBJS) $(LDLIBS)

clean:
 -rm -f $(EXEC) *.elf *.gdb *.o

romfs:
 $(ROMFSINST) /bin/$(EXEC)

%.o: %.c
 $(CC) -c $(CFLAGS) -o $@ $< ---

①

②

③
④

⑤

① If ROOTDIR is not specified, it is assumed that the uClinux-dist directory exists in parallel to

the directory you are currently in. If the uClinux-dist directory does not exist there, specify it
with ROOTDIR.

② Define UCLINUX_BUILD_USER to select the Userland compiler option.
③ Set the executable file name to be created in the variable EXEC. Here, it has been set to hello.
④ Specify the object file to be used for the above executable file. If you need to specify multiple files,

separate them with a space.
⑤ This is a pattern rule for converting C-source code into object code of the same name. For more

information, refer to the Make manual.

26

Armadillo-J User’s Guide ver.2.04

10.3. C Source Code

The C code used in Hello World is shown below.

Example 10-3 Hello World Source Code
#include <stdio.h>

int main(int argc, char * argv[])
{
 printf("Hello World!\n");
 return 0;
}

This is the standard Hello World that can be found in any C textbook. Save this as hello.c. It is

compiled into hello.o according to the Makefile.

10.4. Compiling

Do a make as shown in the following example. If the make completes successfully, three files are created
including hello.o, hello.gdb and hello. hello is the executable file.

Example 10-4 Execution of make
[PC ~/hello]$ make
[PC ~/hello]$ ls
Makefile hello hello.c hello.gdb hello.o
[PC ~/hello]$

10.5. Installing to the ROMFS Directory

The user area for an image file is created from the uClinux-dist/romfs directory. So, in order to
include your own application in the image to be written to the flash memory, it needs to be copied to the
romfs directory.

If, like this time, there is only one generated executable file, the copying is easy. However, it is not so

easy when generating several executable files and copying the configuration and data files. To cope with
this, the Makefile template provides a romfs target.

Example 10-5 Installing Hello World to the ROMFS Directory
[PC ~/hello]$ make romfs
romfs-inst.sh /bin/hello
[PC ~/hello]$ ls ../uClinux-dist/romfs/bin/hello
../uClinux-dist/romfs/bin/hello
[PC ~/hello]$

27

Armadillo-J User’s Guide ver.2.04

10.6. Creating/Executing the Image File

Finally, go to the uClinux-dist directory and create the image file.

By specifying the image target with the make command, after the userland image file (romfs.img) based

on the romfs directory is created, it is combined with the kernel image file (linux.bin) to form the one
image file (image.bin) that is to be written into the flash memory.

Example 10-6 Creating an Image File
[PC ~/hello]$ cd ../uClinux-dist
[PC ~/uClinux-dist]$ make image
 :
 :
 :
[PC ~/uClinux-dist]$ ls images
image.bin image.bin.cksum romfs.img
[PC ~/uClinux-dist]$

Download the created image file to the Armadillo-J and then execute hello. For information on how to

download the file, refer to Chapter 5, “Rewriting Flash Memory.”

Example 10-7 Execution
[AJ ~]# hello
Hello World!
[AJ ~]#

28

Armadillo-J User’s Guide ver.2.04

11. Flat Binary Format

This chapter describes the Flat Binary Format that is one of uClinux’s features. The size of the executable

binary files represents a critical problem in the embedded systems targeted by uClinux. The ELF used by
generic Linux provides a format rich in flexibility but the size is too large. So, most uClinux adopt a new
binary format similar to the traditional “a.out” format.

This section first describes the features of the Flat Binary Format and then provides information on how to

compress executable files and change the stack size.

11.1. Features of the Flat Binary Format

The Flat Binary Format has the following features.

y Simplicity

This simple format design contributes to the execution speed and size of the binary file. Although it
has less flexibility than ELF, it can be said that it is a necessary tradeoff for embedded systems.

y Compression

The Flat Binary Format is a compressible format. There are two compression types, whole file
compression and data area only compression. The executable file will be uncompressed when it is
loaded, so the activation speed is slow compared to a non-compressed executable file. Since there is
no difference between it and a non-compressed file if once it is activated, the format is suitable for
programs such as a residential processes which do not repeatedly activate and shutdown.

y Stack Size Field

The Flat Binary Format has a stack size field that can be changed without re-compiling. In CPUs
without a MMU, since it is difficult to extend the stack area dynamically, it has a stack area with fixed
stack size. This field can be changed with the flthdr tool. Furthermore, it is also possible to specify
its stack size at compiling.

y XIP (eXecute In Place)

The Flat Binary Format is also compatible with XIP. XIP is an abbreviation for “eXecute In Place”
(spot execution), and generally refers to the ability of executable files to run directly on ROM where
they are stored, without being copied to RAM.

11.2. Compressing an Executable File

The following example shows how to compress the Hello World program created in the previous chapter.
The latter part of this section describes how to specify compression when compiling.

11.2.1. Compressing a Compiled Binary File
Here, flthdr is used to compress a compiled binary file. flthdr is a program that is used to edit or

view Flat Binary Format files.

29

Armadillo-J User’s Guide ver.2.04

Example 11-1 shows an executable file created in a standard compiling.

Example 11-1 Normal Flat Binary Format
[PC ~/hello]$ make
[PC ~/hello]$ flthdr hello
hello
 Magic: bFLT
 Rev: 4
 Entry: 0x50
 Data Start: 0x3e60
 Data End: 0x4bf0
 BSS End: 0x6bf0
 Stack Size: 0x1000
 Reloc Start: 0x4bf0
 Reloc Count: 0x53
 Flags: 0x1 (Load-to-Ram)
[PC ~/hello]$

Then compress it with flthdr.

Example 11-2 Compressed Flat binary Format
[PC ~/hello]$ flthdr -z hello ----------------------------
zflat hello --> hello
[PC ~/hello]$ flthdr hello -------------------------------
hello
 Magic: bFLT
 Rev: 4
 Entry: 0x50
 Data Start: 0x3e60
 Data End: 0x4bf0
 BSS End: 0x6bf0
 Stack Size: 0x1000
 Reloc Start: 0x4bf0
 Reloc Count: 0x53
 Flags: 0x5 (Load-to-Ram Gzip-Compressed) ----
[PC ~/hello]$

①

②

③

① Pass the compression option -z to flthdr.
② Display the header of the executable file created with the flthdr command.
③ The Gzip-Compressed flag can be seen.

11.2.2. Compression at Compiling
The FLTFLAGS environment variable is used for compression at compiling. The following is an example
with Hello World.

30

Armadillo-J User’s Guide ver.2.04

Example 11-3 Specifying Compression with FLTFLAGS
[PC ~/hello]$ make FLTFLAGS=-z --------------------------
[PC ~/hello]$ flthdr hello -------^----------------------
hello
 Magic: bFLT
 Rev: 4
 Entry: 0x50
 Data Start: 0x3e60
 Data End: 0x4bf0
 BSS End: 0x6bf0
 Stack Size: 0x1000
 Reloc Start: 0x4bf0
 Reloc Count: 0x53
 Flags: 0x5 (Load-to-Ram Gzip-Compressed) ----
[PC ~/hello]$

①
②

③

① Execute make while setting the FLTFLAGS environment variable to -Z.
② Display the header of the executable file created with the flthdr command.
③ The Gzip-Compressed flag can be seen.

11.3. Specifying Stack Size

This section introduces two methods of specifying stack size.

11.3.1. Changing the Stack Size of a Compiled Binary File
The stack size is specified with flthdr –s. While dependant on architecture, it seems the default stack

size value is mostly 4096.

Example 11-4 Changing Stack Size
[PC ~/hello]$ flthdr -s 8192 -----------------------------
[PC ~/hello]$ flthdr hello -------------------------------
hello
 Magic: bFLT
 Rev: 4
 Entry: 0x50
 Data Start: 0x3e60
 Data End: 0x4bf0
 BSS End: 0x6bf0
 Stack Size: 0x2000 ---------------------------------
 Reloc Start: 0x4bf0
 Reloc Count: 0x53
 Flags: 0x1 (Load-to-Ram)
[PC ~/hello]$

①
②

③

① Pass the change stack size option -s and the stack size to flthdr.
② Display the header of the executable file created with the flthdr command.
③ The change to 8192bytes can be seen.

11.3.2. Specifying Stack Size at Compiling
The FLTFLAGS environment variable is used to specify stack size at compiling. The following shows an
example with Hello World.

31

Armadillo-J User’s Guide ver.2.04

Example 11-5 Specifying Stack Size with FLTFLAGS
[PC ~/hello]$ make FLTFLAGS='-s 8192' --------------------
[PC ~/hello]$ flthdr hello -------------------------------
hello
 Magic: bFLT
 Rev: 4
 Entry: 0x50
 Data Start: 0x3e60
 Data End: 0x4bf0
 BSS End: 0x6bf0
 Stack Size: 0x2000 ---------------------------------
 Reloc Start: 0x4bf0
 Reloc Count: 0x53
 Flags: 0x1 (Load-to-Ram)
[PC ~/hello]$

①
②

③

① Execute make while setting the FLTFLAGS environment variable to -s 8192.
② Display the header of the executable file created with the flthdr command.
③ The change to 8192bytes can be seen.

32

Armadillo-J User’s Guide ver.2.04

12. Troubleshooting

12.1. The Armadillo-J Doesn’t Boot Properly

If the Armadillo-J does not startup properly as a result of writing an improper image file to the flash
memory, rewrite the image/base.img image contained in the supplied CD to the flash memory following
the procedure described in Chapter 5, “Rewriting Flash Memory.”

12.2. Restoring Default Settings

You can restore default settings by writing the image/recover.img image contained in the supplied CD
to the flash memory following the procedure described in Chapter 5, “Rewriting Flash Memory.”

33

Armadillo-J User’s Guide ver.2.04

13. Appendix

13.1. Building a Development Environment in Windows

A cross-development environment for the Armadillo-J can be built on Windows by utilizing coLinux
(http://www.colinux.org/), a form of Linux that can be run on a Windows system. Windows XP and
Windows2000 are supported..

13.1.1. Installing coLinux

1) Execute coLinux-0.6.1.exe contained in the colinux directory of the supplied CD.
2) Specify c:\colinux as the install folder. All other settings can be left at their defaults.

Note: If another directory is specified as the install folder, you will need to edit the file prepared under

the following procedure (default.colinux.xml) and change the directory name as
appropriate.

13.1.2. Preparing Files for Building Environment

From the colinux directory on the supplied CD, prepare the following files and decompress them
into the coLinux install folder (c:\colinux).

root_fs.lzh (root file system) •
•
•
•

swap_device_256M.lzh (swap file system)
home_fs_2G.lzh (/home-mounted file system)
default.colinux.xml.lzh (device data settings file

Note: The value in the file names swap_device_…, home_fs_… represents the file size after

decompression. Other sizes are also available. Choose and decompress the file size
deemed appropriate.

Note: Dependent on the decompression software, decompression can fail. LHA Utility 32, Ver1.46
(http://www.lhut32.com/index.shtml) has been verified to work successfully.

13.1.3. Running coLinux

1) Open a DOS prompt and go to the install folder (c:\colinx).
2) Enter the command string colinux-daemon.exe -c default.colinux.xml.
3) A colinux login: prompt is displayed following the startup log. Login as “root”.

13.1.4. Network Settings

coLinux has a separate IP address to Windows and as it accesses the network via Windows some
configuration within Windows is required.
Several methods are available including router connection and bridge connection. The following

explains how to setup a bridge connection.

(Windows XP)
1) From the control panel, open “Network Connections”.
2) Right-click an externally connected network and open “Properties”.
3) Open the “Advanced” tab and enable Internet connection sharing.

34

http://www.colinux.org/
http://www.lhut32.com/index.shtml

Armadillo-J User’s Guide ver.2.04

(Windows2000)
1) From Control Panel, open “Network and Dial-up Connections”.
2) Right-click an externally connected network and open “Properties”.
3) Open the “Sharing” tab and enable the Internet connection sharing”.

Then, execute the following command to enable the network settings in coLinux.

Example 13-1 Network Setting Command

colinux:~# /etc/init.d/networking restart
Reconfiguring network interfaces: done.
colinux:~#

For Router Connections, as the network address of 192.168.0.0/24 is automatically
used, if the network address of external connection is the same 192.168.0.0/24, the
connection will fail. In this case please change the network address of the external
connection.

If the network address of the external connection cannot be changed, refer to
13.1.8 “Windows Network Setup Under Special Circumstances”.

13.1.5. Creating a coLinux User

In the coLinux screen enter the command as shown in Example 13-2 to create a user. Choose an
appropriate password.

Example 13-2 Adding User “somebody”

colinux:~# adduser somebody
Adding user somebody...
Adding new group somebody (1000).
Adding new user somebody (1000) with group somebody.
Creating home directory /home/somebody.
Copying files from /etc/skel
Enter new UNIX password:

13.1.6. File Sharing between Windows and coLinux

This is a method for exchanging files between coLinux and Windows uses Windows’ shared folder.
In the coLinux screen execute a smbmount command as shown in Example 13-3 and enter the
password for the shared folder.

Example 13-3 Windows IP Address: 192.168.0.100, Shared Folder Name: “shared”

colinux:~# mkdir /mnt/smb
colinux:~# smbmount //192.168.0.100/shared /mnt/smb
212: session request to 192.168.0.100 failed (Called name not present)
212: session request to 192 failed (Called name not present)
Password:

35

Armadillo-J User’s Guide ver.2.04

If the user name is different from that on the Windows side, specify it with a command option. For

more information, execute “man smbmount” and refer the help.
After this, data in the windows’ shared folder ”shared” and that in the coLinux directory /mnt/smb will

be the same.

13.1.7. Introducing a Cross Development Environment

Build a cross-development environment in coLinux by following Chapter 7, “Preparing Development
Environment.”

All files necessary for the building of the environment can be accessed from coLinux through the
shared folder as described above.

Armadillo-J development can now be carried out from Windows. The following sections provide

instructions for special cases.

13.1.8. Windows Network Setup Under Special Circumstances

These network settings are to be used when the external network connection as an address of
192.168.0.0/24.

 (Windows XP)

“Bridge Connection”

1) From the control panel, open “Network Connections”.
2) Select both the external network connection and the network connection with the device name

“TAP-Win32 adapter”.
3) From the “Advanced” menu, select “Bridge Connection”.

(Windows2000)

In this method, a network address other than 192.168.0.0/24 is used for the private network in
Windows2000. Here, the network address of 192.168.1.0/24 is used.

1) From the control panel, open “Network and Dialup Connections”.
2) Right-click the externally connected network and choose to disable it.
3) Right-click the externally connected network to open “Properties”.
4) On the “General” tab, select “Internet Protocol (TCP/IP)” and press the “Properties” button.
5) Select “Use the following IP address” and enter “192.168.100.100”.
6) Open the “Share” tab and enable Internet connection sharing.
7) Right-click the network connection with device name “TAP-Win32 adapter” and open “Properties”.
8) Select “Internet Protocol (TCP/IP) on the “General” tab and press the “Properties” button.
9) Select “Use the following IP address” and enter 192.168.1.1.
10) Right-click the externally connected network and open “Properties”.
11) Select “Internet Protocol (TCP/IP) on the “General” tab and press the “Properties” button.
12) Return the IP address settings to their original state.
13) Right-click the externally connected network and choose to enable it.

13.1.9. coLinux Network Configuration

After coLinux is installed, DHCP is used by default. In an environment where a DHCP server is not
running, a fixed IP address must be set.

Network settings can be viewed using the ifconfig command.

36

Armadillo-J User’s Guide ver.2.04

Example 13-4 Executing a ifconfig command

colinux:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:43:4F:4E:45:30
 inet addr:192.168.0.151 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:189 errors:0 dropped:0 overruns:0 frame:0
 TX packets:115 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:24472 (23.8 KiB) TX bytes:9776 (9.5 KiB)
 Interrupt:2

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

colinux:~#

 If the IP address of the eth0 device is not displayed, a fixed IP address must be set. The IP address
should be set to match the “TAP-Win32 adapter” network connection for “Router Connections” or to
match the external network connection for “Bridge Connections”.

 The following describes how to the change settings to those shown in Table 13-1.

Table 13-1 Network Settings

Parameter Setting
IP Address 192.168.1.100
Net Mask 255.255.255.0
Gateway 192.168.1.1
DNS Server 192.168.1.1

1) Edit /etc/network/interfaces in coLinux as shown in Example 13-5.

Example 13-5 Example of Editing a /etc/network/interfaces File

auto lo eth0
iface lo inetloopback
iface eth0 inet static
address 192.168.1.100
gateway 192.168.1.1
netmask 255.255.255.0

37

Armadillo-J User’s Guide ver.2.04

2) Edit the /etc/resolv.conf in coLinux as shown in Example 13-6.

Example 13-6 Example of Editing a /etc/resole.conf File

nameserver 192.168.1.1

3) Execute the following command to update the network settings as edited.

Example 13-7 A Command to Reconfigure Network Settings

colinux:~# /etc/init.d/networking restart
Reconfiguring network interfaces: done.
colinux:~#

38

Armadillo-J User’s Guide ver.2.04

13.2. About The Base Image

13.2.1. Memory Map of The Base Image

Flash memory devices can be checked in the following section of the boot log.

Initializing Armadillo-J MTD mappings
flash memory device = M29W160EB detected
 Amd/Fujitsu Extended Query Table v1.0 at 0x0040
number of CFI chips: 1
cfi_cmdset_0002: Disabling fast programming due to code brokenness.

Table 13-2 Memory Map (Flash Memory Devices: AM29LV160DB, MBM29LV160BE)

Address Contents of Flash Memory Memory Size Description
0x02000000

 Reserved
(Rewriting not allowed)

128kB

0x0201ffff
0x02020000

 Bootloader (hermit) 128kB
0x0203ffff
0x02040000

 kernel

 Approx. 1.7MB
 userland
 base.img Image

0x021effff
0x021f0000

 /etc/config
(Rewritable)

64kB

0x021fffff

Note: Only the kernel and userland are copied to RAM before uCLinux boots.

39

Armadillo-J User’s Guide ver.2.04

Table 13-3 Memory Map (Flash Memory Device: M29W160EB)

Address Contents of Flash Memory Memory Size Description
0x02000000

 Board Parameter
（Rewriting not allowed）

64kB

0x0200ffff
0x02010000

 kernel

 Approx.1.9MB
 userland
 base.img Image

0x021effff
0x021f0000

 /etc/config
(Rewritable)

64kB

0x021fffff

Note: Only the kernel and userland are copied to RAM before uCLinux boots.

Table 13-4 Memory Map (RAM)

Address Contents of RAM File System Description
0x08000000

 kernel base.img Image

 Copied from flash Memory
 Userland romfs before startup of uCLinux

 /var ramfs

 /etc/config ramfs

 /home/guest/pub ramfs

40

Armadillo-J User’s Guide ver.2.04

13.2.2. Command List

Table 13-5 Command List

Command Name Description
addgroup Add a group.
adduser Add a user.
Cat Output files continuously.
Chgrp Change group ownership of a file.
chmod Change access right of a file.
chown Change ownership and group of a file.
Cp Copy a file.
delgroup Delete a group.
deluser Delete a user.
echo Display one line of text.
false Return a “1” representing a termination status of “failure” where nothing

occurs after execution
flatfsd flat file system daemon
ftpd ftp daemon
inetd Inet daemon
kill Send a signal to a process.
ls Display a directory list.
mkdir Create a directory.
more Filter for viewing a file
mount Mount file system
netflash Update the onboard flash image via network
passwd Change a password
ping Send a ICMP ECHO_REQUEST packet to a network host
Ps Display state of processes
route Display and set an IP routing table
Sh Shell
Su Obtain super user rights
sulogin Login in single mode
telnetd telnet daemon
test Check a file format and compare values
thttpd Daemon to provide Web server functionality
tinylogin Tool suit for login and user management
true Return a “0” representing a termination status of “success” where nothing

occurs after execution
umount Unmount a file system
watchdog Watchdog daemon
vi Text editor

13.2.3. Startup Daemon List

Table 13-6 Startup Daemon List

Start Daemon Description
flatfsd Saves data to the flash memory
inetd Provide various network service interfaces (telnet, ftp, etc.)
thttpd Web server functionality

41

Armadillo-J User’s Guide ver.2.04

13.3. Original Device Driver Specifications

13.3.1. Parallel Port Driver

 Parameters of device nodes corresponding to a parallel port (CON2) are shown in Table 13-6.

Table 13-7 Parallel Port List

Type Major No. Minor No. Node Name
(/dev/xxx) Device Name

0 padr0 Port A Data Register
CH0 (Pin.7)

1 padr1 Port A Data Register
CH1 (Pin.5)

2 padr2 Port A Data Register
CH2 (Pin.6)

5 padr5 Port A Data Register
CH5 (Pin.3)

6 padr6 Port A Data Register
CH6 (Pin.4)

8 padr Port A Data Register
All CH(8bit)

16 paddr0 Port A Data Direction
Register CH0 (Pin.7)

17 paddr1 Port A Data Direction
Register CH1 (Pin.5)

18 paddr2 Port A Data Direction
Register CH2 (Pin.6)

21 paddr5 Port A Data Direction
Register CH5 (Pin.3)

Character
Device 210

22 paddr6 Port A Data Direction
Register CH6 (Pin.4)

- Data Type

padr 0,1,2,5,6 (each CH): unsigned char (8bit) 0x00 / 0x01
padr (All CH): unsigned char (8bit) 0x00～0xff
paddr 0,1,2,5,6 (each CH): unsigned char (8bit) 0x00 / 0x01 / 0x02

 The mode of each parallel port pin can be set with paddr (0: input / 1: output / 2: serial) and data
writing/reading with padr.
 padr 0,1,2,5,6 and paddr 0,1,2,5,6 can read and write to each CH and padr can read and write to all CH
(8bit) simultaneously. CH0 corresponds to the lowest-order bit, CH7 to the highest-order bit, and padr
(all-CH) to all bits. (As CH3, 4 and 7 are fixed serial mode, their values will not be affected by writing).

42

Armadillo-J User’s Guide ver.2.04

Example 13-8 Sample Program of Parallel Port Operation
#include <fcntl.h>
#include <stdio.h>

int main (void)
{
 int fd_ddr, fd_dr;
 unsigned char val;

 // Sets CH0 Direction to write only and open
 fd_ddr = open (“/dev/paddr0”, O_WRONLY);
 if (fd_ddr < 0) {
 fprintf (stderr, “Open error.\n”);
 return –1;
 }
 // Sets CH0 to read/write and open
 fd_dr = open (“/dev/padr0”, O_RDWR);
 if (fd_dr < 0) {
 fprintf (stderr, “Open error.\n”);
 return –1;
 }

 val = 1;
 write (fd_ddr, &val, sizeof(unsigned char)); //CH0 to output
 val = 1;
 write (fd_dr, &val, sizeof(unsigned char)); // Outputs High to CH0

 val = 0;
 write (fd_ddr, &val, sizeof(unsigned char)); // CH0 to input
 read (fd_dr, &val, sizeof(unsigned char)); // CH0 read to val
 printf (“padr0: %d\n”, val); // Display val

 close (fd_ddr);
 close (fd_dr);

 return 0;
}

43

Armadillo-J User’s Guide ver.2.04

13.3.2. LED Control Driver

 The parameters of the device node for controlling the Status LED (D4) are as follows.

Table 13-8 LED Device Node Parameters

Type Major No. Minor No. Node Name
(/dev/xxx)

Character
Device 240 0 ajled

 The LED is controlled by opening the device node and writing the following data.

Table 13-9 Written Data and Corresponding State

Data Size State
“OFF” 3 Bytes Off
“ON” 2 Bytes On

 Also, the current state of the LED can be acquired by reading the device node.
 The relationship between the acquired value and the LED state is as follows.

Table 13-10 Read Data and Corresponding State

Data Size State
“OFF” 3 Bytes Off
“ON” 2 Bytes On

44

Armadillo-J User’s Guide ver.2.04

 Sample source code for the control of the LED is shown below.

Example 13-9 Sample Program LED control

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

int main(void)
{
 int fd = 0;
 char status[4]={0,0,0,0};

 if((fd = open("/dev/ajled", O_RDWR)) < 0){
 fprintf(stderr, "Open error \n");
 return -1;
 }

 /* Light LED */
 write(fd, "ON", 2);

 /* Acquire current state of LED */
 read(fd, status, 4);
 printf("current status : %s\n", status);

 sleep(1);

 /*Turn LED off */
 write(fd, "OFF", 3);

 /* Acquire current state of LED */
 read(fd, status, 4);
 printf("current status : %s\n", status);

 close(fd);
 return 0;
}

45

Armadillo-J User’s Guide ver.2.04

13.4. URL List

Figure 13-1 URL List

URL Summary
http://armadillo.atmark-techno.com/ Armadillo Official Site
http://www.digi.com/ Digi Official Site
http://www.uclinux.org/ uClinux Official Site
http://www.uclibc.org/ uClibc Official Site
http://www.colinux.org/ coLinux Official Site
http://www.busybox.net/ BusyBox Official Site
http://tinylogin.busybox.net/ TinyLogin Official Site
http://www.net-snmp.org/ ucd-snmp Official Site
http://hp.vector.co.jp/authors/VA002416/ TeraTerm Official Site
http://alioth.debian.org/projects/minicom/ Minicom Official Site
http://www.beyondlogic.org/ Description of binary-flat
http://www.lhut32.com/index.shtml LHA Utility 32

46

http://armadillo.atmark-techno.com/
http://www.digi.com/
http://www.uclinux.org/
http://www.uclibc.org/
http://www.colinux.org/
http://www.busybox.net/
http://tinylogin.busybox.net/
http://www.net-snmp.org/
http://hp.vector.co.jp/authors/VA002416/
http://alioth.debian.org/projects/minicom/
http://www.beyondlogic.org/
http://www.lhut32.com/index.shtml

Armadillo-J User’s Guide ver.2.04

Revision History

Ver. Date Description
1.00 2003.12.24 y Initial release
1.01 2004.1.6 y Correction to a description in “6.5. Network Settings”

1.02 2004.1.14

y Additional descriptions of “6.2.2. Features of /etc/config Directory” and
restoration procedure after damage to Config area.
y ”6.7. ftp Login”, login user was changed to “guest only”.
y Additional description of recommended environment/distribution
to ”7.1. Building a Development Environment”.
y Addition of “8.2. To return “Image” to the default state (Hermit for
WIN32)”.
y Additional description of “A.3. Changing Stack Size”.
y Additional command descriptions to “Table 13-5 Command List
(addgroup, adduser, delgroup, deluser, passwd, su, sulogin).
y Deletion of commands ((fsck.minix, free, ln, mkfs.minix) from “Table
13-5 Command List
y Correction to a description regarding data updating to the flash
memory in “6.2.2. Features of /etc/config Directory”, “6.4. Termination
Method” and “6.5.2. Using DHCP”
y Correction to a typographical error

1.03 2004.1.22 y Correction to a typographical error

1.04 2004.2.26

y Correction to a description in “5.2.2. Downloading Rewriting Image”.
y Addition of “6.9. watchdog timer function” and “6.10. SNTP function”.
y Addition of “7.2. Building a development environment on Windows”
y Addition of a command (msntp) to “Table 13-5 Command List
y Addition of ”Digi” and “cygwin Official site” to “Appendix.C URL List”.
y Correction to a typographical error

1.05 2004.3.9 y Addition of a “Windows method” to Section 5.2.2 “Downloading a
Rewriting Image”.

1.06 2004.4.14 y Correction to revision history, linking to the appropriate text.
y Addition of “ Parallel Port Driver”

2.00 2004.6.10 y Full-fledged revision

2.01 2004.9.3 y Revision addressing the exclusion of the msntp application
y Correction of a typographical error.

2.02 2004.10.5 y Addition of “LED Control Driver”.
2.03 2004.12.29 y Company address updated
2.04 2005.3.4 y Revisions made to accompany changes to the memory map

47

http://www.digi.com/
http://www.cygwin.com/

Armadillo-J [AJ010] User’s Guide March 4, 2005 ver.2.04

Atmark Techno, Inc.
AFT Building 6F, North 5 East 2, Chuo-ku, Sapporo, Hokkaido 060-0035
 TEL: 011-207-6550 FAX: 011-207-6570

	Table of Contents
	Introduction
	About This Manual
	Typographical Conventions
	Conventions in Command Input Examples
	Trademarks
	Acknowledgements

	Safety Precautions
	Safety Precautions
	Operational Precautions
	Software Related Precautions

	Overview of Armadillo-J
	Features
	Functions and Application Examples
	Device Control via Network
	Linux Terminal
	Development of Original Embedded Devices

	Before Getting Started
	Preparations
	Connections

	Rewriting Flash Memory
	Installing the Downloader
	Rewriting Procedure
	Setting Jumper Pins
	Downloading a Rewriting Image

	Getting Started
	Before Booting
	Booting
	Directory Structure
	Saving Data
	Exiting
	Network Settings
	Using a Fixed IP Address
	Using DHCP

	telnet Login
	File Transfer
	Web Server

	Preparing Development Environment
	Installing the Tool Chain
	Configuring Environment Variables
	Preparing Source Code

	Image Creation with uClinux-dist
	Work Flow
	Menuconfig
	Main Menu
	Target Platform Selection Menu

	Building

	uClinux-dist Configuration
	Changing Kernel Settings
	Customizing Userland Settings

	Creating Your Own Application
	Creating a Directory
	Creating a Makefile
	C Source Code
	Compiling
	Installing to the ROMFS Directory
	Creating/Executing the Image File

	Flat Binary Format
	Features of the Flat Binary Format
	Compressing an Executable File
	Compressing a Compiled Binary File
	Compression at Compiling

	Specifying Stack Size
	Changing the Stack Size of a Compiled Binary File
	Specifying Stack Size at Compiling

	Troubleshooting
	The Armadillo-J Doesn�ft Boot Properly
	Restoring Default Settings

	Appendix
	Building a Development Environment in Windows
	Installing coLinux
	Preparing Files for Building Environment
	Running coLinux
	Network Settings
	Creating a coLinux User
	File Sharing between Windows and coLinux
	Introducing a Cross Development Environment
	Windows Network Setup Under Special Circumstances
	coLinux Network Configuration

	About The Base Image
	Memory Map of The Base Image
	Command List
	Startup Daemon List

	Original Device Driver Specifications
	Parallel Port Driver
	LED Control Driver

	URL List

