
MCSDKERPCGSUG
eRPC Getting Started User Guide
Rev. 12 — 17 June 2024 User guide

Document information
Information Content

Keywords eRPC, Getting Started, Remote Procedure Calls, RPC, Embedded, Multicore

Abstract This Getting Started User Guide document lists the steps to use Remote Procedure Calls (RPC)
in embedded multicore microcontrollers (eRPC).

https://www.nxp.com

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

1 Overview

This Getting Started User Guide shows software developers how to use Remote Procedure Calls (RPC) in
embedded multicore microcontrollers (eRPC).

The eRPC documentation is located in the <MCUXpressoSDK_install_dir>/ middleware/multicore/erpc/doc
folder.

2 Create an eRPC application

This section describes a generic way to create a client/server eRPC application:

1. Design the eRPC application: Decide which data types are sent between applications, and define
functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used in an eRPC
application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for the client and
the server-side applications.

4. Create an eRPC application:
a. Create two projects, where one project is for the client side (primary core) and the other project is for the

server side (secondary core).
b. Add generated files for the client application to the client project, and add generated files for the server

application to the server project.
c. Add infrastructure files.
d. Add user code for client and server applications.
e. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that the server has
been run before the client request was sent.

A specific example follows in the next section.

3 eRPC example

This section shows how to create an example eRPC application called “Matrix multiply”, which implements one
eRPC function (matrix multiply) with two function parameters (two matrices). The client-side application calls
this eRPC function, and the server side performs the multiplication of received matrices. The server side then
returns the result.

For example, use the NXP MIMXRT1170-EVK board as the target dual-core platform, and the IAR Embedded
Workbench for ARM (EWARM) as the target IDE for developing the eRPC example.

• The primary core (CM7) runs the eRPC client.
• The secondary core (CM4) runs the eRPC server.
• RPMsg-Lite (Remote Processor Messaging Lite) is used as the eRPC transport layer.

The “Matrix multiply” application can be also run in the multi-processor setup. In other words, the eRPC client
running on one SoC comunicates with the eRPC server that runs on anothe SoC, utilizing different transport
channels. It is possible to run the board-to-PC example (PC as the eRPC server and a board as the eRPC
client, and vice versa) and also the board-to-board example. These multiprocessor examples are prepared for
selected boards only.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
2 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Multicore application source and project
files

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/
erpc_matrix_multiply_rpmsg/

Multiprocessor application source and
project files

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_
examples/erpc_client_matrix_multiply_<transport_layer>/
<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_
examples/erpc_server_matrix_multiply_<transport_layer>/

eRPC source files <MCUXpressoSDK_install_dir>/middleware/multicore/erpc/

RPMsg-Lite source files <MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

Table 1. File locations

3.1 Designing the eRPC application
The matrix multiply application is based on calling single eRPC function that takes 2 two-dimensional arrays as
input and returns matrix multiplication results as another 2 two-dimensional array. The IDL file syntax supports
arrays with the dimension length set by the number only (in the current eRPC implementation). Because of this,
a variable is declared in the IDL dedicated to store information about matrix dimension length, and to allow easy
maintenance of the user and server code.

For a simple use of the two-dimensional array, the alias name (new type definition) for this data type has is
declared in the IDL. Declaring this alias name ensures that the same data type can be used across the client
and server applications.

3.2 Creating the IDL file
The created IDL file is located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_
multiply/service/erpc_matrix_multiply.erpc

The created IDL file contains the following code:

program erpc_matrix_multiply
/*! This const defines the matrix size. The value has to be the same as the
Matrix array dimension. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
const int32 matrix_size = 5;
/*! This is the matrix array type. The dimension has to be the same as the
matrix size const. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
type Matrix = int32[matrix_size][matrix_size];
interface MatrixMultiplyService {
erpcMatrixMultiply(in Matrix matrix1, in Matrix matrix2, out Matrix result_matrix) ->
void
}

Details:

• The IDL file starts with the program name (erpc_matrix_multiply), and this program name is used in the
naming of all generated outputs.

• The declaration and definition of the constant variable named matrix_size follows next. The matrix_size
variable is used for passing information about the length of matrix dimensions to the client/server user code.

• The alias name for the two-dimensional array type (Matrix) is declared.
• The interface group MatrixMultiplyService is located at the end of the IDL file. This interface group contains

only one function declaration erpcMatrixMultiply.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
3 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

• As shown above, the function’s declaration contains three parameters of Matrix type: matrix1 and matrix2 are
input parameters, while result_matrix is the output parameter. Additionally, the returned data type is declared
as void.

When writing the IDL file, the following order of items is recommended:

1. Program name at the top of the IDL file.
2. New data types and constants declarations.
3. Declarations of interfaces and functions at the end of the IDL file.

3.3 Using the eRPC generator tool

Windows OS <MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Windows

Linux OS <MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x64
<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x86

Mac OS <MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Mac

Table 2. eRPC generator application file locations

The files for the “Matrix multiply” example are pre-generated and already a part of the application projects. The
following section describes how they have been created.

• The easiest way to create the shim code is to copy the erpcgen application to the same folder where the IDL
file (*.erpc) is located; then run the following command:
erpcgen <IDL_file>.erpc

• In the “Matrix multiply” example, the command should look like:
erpcgen erpc_matrix_multiply.erpc

Additionally, another method to create the shim code is to execute the eRPC application using input commands:

• “-?”/”—help” – Shows supported commands.
• “-o <filePath>”/”—output<filePath>” – Sets the output directory.

For example,

<path_to_erpcgen>/erpcgen –o <path_to_output>
<path_to_IDL>/<IDL_file_name>.erpc

For the “Matrix multiply” example, when the command is executed from the default erpcgen location, it looks
like:

erpcgen –o

../../../../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service ../../../../../
boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.e
rpc

In both cases, the following four files are generated into the <MCUXpressoSDK_install_dir>/boards/
evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service folder.

• erpc_matrix_multiply.h
• erpc_matrix_multiply_client.cpp
• erpc_matrix_multiply_server.h
• erpc_matrix_multiply_server.cpp

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
4 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

For multiprocessor examples, the eRPC file and pre-generated files can be found in the <MCUXpressoSDK_
install_dir>/boards/<board_name>/multiprocessor_examples/erpc_common/erpc_matrix_multiply/service folder.

For Linux OS users:

• Do not forget to set the permissions for the eRPC generator application.
• Run the application as ./erpcgen… instead of as erpcgen ….

3.4 Create an eRPC application
This section describes a generic way to create a client/server eRPC application:

1. Design the eRPC application: Decide which data types are sent between applications, and define
functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used in an eRPC
application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for the client and
the server-side applications.

4. Create an eRPC application:
a. Create two projects, where one project is for the client side (primary core) and the other project is for the

server side (secondary core).
b. Add generated files for the client application to the client project, and add generated files for the server

application to the server project.
c. Add infrastructure files.
d. Add user code for client and server applications.
e. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that the server has
been run before the client request was sent.

A specific example follows in the next section.

3.4.1 Multicore server application

The “Matrix multiply” eRPC server project is located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/
iar/

The project files for the eRPC server have the _cm4 suffix.

3.4.1.1 Server project basic source files

The startup files, board-related settings, peripheral drivers, and utilities belong to the basic project source files
and form the skeleton of all MCUXpresso SDK applications. These source files are located in:

• <MCUXpressoSDK_install_dir>/devices/<device>
• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
5 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 1. Server project basic source files

3.4.1.2 Server related generated files

The server-related generated files are:

• erpc_matric_multiply.h
• erpc_matrix_multiply_server.h
• erpc_matrix_multiply_server.cpp

The server-related generated files contain the shim code for functions and data types declared in the IDL file.
These files also contain functions for the identification of client requested functions, data deserialization, calling

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
6 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

requested function’s implementations, and data serialization and return, if requested by the client. These shim
code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_
multiply/service/

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
7 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 2. Server-related generated files

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
8 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

3.4.1.3 Server infrastructure files

The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++ language. These
files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client applications.
– Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side applications. The
simple server is currently the only implementation of the server, and its role is to catch client requests,
identify and call requested functions, and send data back when requested.

– Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

– The erpc_common.hpp file is used for common eRPC definitions, typedefs, and enums.
– The erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.
– Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_message_buffer.cpp.

– The erpc_transport.h file defines the abstract interface for transport layer.
• The port subfolder contains the eRPC porting layer to adapt to different environments.

– erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.
– erpc_port_stdlib.cpp file ensures adaptation to stdlib.
– erpc_config_internal.h internal erpc configuration file.

• The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing client and
server init and deinit routines that greatly simplify eRPC usage in C-based projects. No knowledge of C++ is
required to use these APIs.
– The erpc_server_setup.h and erpc_server_setup.cpp files needs to be added into the “Matrix

multiply” example project to demonstrate the use of C-wrapped functions in this example.
– The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be added

into the project in order to allow the C-wrapped function for transport layer setup.
– The erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in

order to allow message buffer factory usage.
• The transports subfolder contains transport classes for the different methods of communication supported

by eRPC. Some transports are applicable only to host PCs, while others are applicable only to embedded or
multicore systems. Most transports have corresponding client and server setup functions in the setup folder.
– RPMsg-Lite is used as the transport layer for the communication between cores,
erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
9 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 3. Server infrastructure files

3.4.1.4 Server multicore infrastructure files

Because of the RPMsg-Lite (transport layer), it is also necessary to include RPMsg-Lite related files, which are
in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control the secondary
core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
10 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 4. Server multicore infrastructure files

3.4.1.5 Server user code

The server’s user code is stored in the main_core1.c file, located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4

The main_core1.c file contains two functions:

• The main() function contains the code for the target board and eRPC server initialization. After the
initialization, the matrix multiply service is added and the eRPC server waits for client’s requests in the while
loop.

• The erpcMatrixMultiply() function is the user implementation of the eRPC function defined in the IDL file.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
11 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

• There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error_handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix
 *result_matrix)
{
 ...
}
int main()
{
 ...
 /* RPMsg-Lite transport layer initialization */
 erpc_transport_t transport;
 transport = erpc_transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
 ERPC_TRANSPORT_RPMSG_LITE_LINK_ID, SignalReady, NULL);
 ...
 /* MessageBufferFactory initialization */
 erpc_mbf_t message_buffer_factory;
 message_buffer_factory = erpc_mbf_rpmsg_init(transport);
 ...
 /* eRPC server side initialization */
 erpc_server_t server;
 server = erpc_server_init(transport, message_buffer_factory);
 ...
 /* Adding the service to the server */
 erpc_service_t service = create_MatrixMultiplyService_service();
 erpc_add_service_to_server(server, service);
 ...
 while (1)
 {
 /* Process eRPC requests */
 erpc_status_t status = erpc_server_poll(server);
 /* handle error status */
 if (status != kErpcStatus_Success)
 {
 /* print error description */
 erpc_error_handler(status, 0);
 ...
 }
 ...
 }
}

Except for the application main file, there are configuration files for the RPMsg-Lite (rpmsg_config.h)
and eRPC (erpc_config.h), located in the <MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/
multicore_examples/ erpc_matrix_multiply_rpmsg folder.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
12 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 5. Server user code

3.4.2 Multicore client application

The “Matrix multiply” eRPC client project is located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/
iar/

Project files for the eRPC client have the _cm7 suffix.

3.4.2.1 Client project basic source files

The startup files, board-related settings, peripheral drivers, and utilities belong to the basic project source files
and form the skeleton of all MCUXpresso SDK applications. These source files are located in the following
folders:

• <MCUXpressoSDK_install_dir>/devices/<device>
• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
13 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 6. Client application

3.4.2.2 Client-related generated files

The client-related generated files are:

• erpc_matric_multiply.h
• erpc_matrix_multiply_client.cpp

These files contain the shim code for the functions and data types declared in the IDL file. These functions
also call methods for codec initialization, data serialization, performing eRPC requests, and de-serializing
outputs into expected data structures (if return values are expected). These shim code files can be found in
the <MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_
multiply/service/ folder.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
14 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 7. Client-related generated files

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
15 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

3.4.2.3 Client infrastructure files

The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++ language. These
files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client applications.
• Two files, erpc_client_manager.h and erpc_client_manager.cpp, are used for managing the client-

side application. The main purpose of the client files is to create, perform, and release eRPC requests.
• Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for

codecs. Currently, the basic codec is the initial and only implementation of the codecs.
• erpc_common.h file is used for common eRPC definitions, typedefs, and enums.
• erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.
• Message buffer files are used for storing serialized data: erpc_message_buffer.hpp and
erpc_message_buffer.cpp.

• erpc_transport.hpp file defines the abstract interface for transport layer.

The port subfolder contains the eRPC porting layer to adapt to different environments.

• erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.
• erpc_port_stdlib.cpp file ensures adaptation to stdlib.
• erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing client and server
init and deinit routines that greatly simplify eRPC usage in C-based projects. No knowledge of C++ is required
to use these APIs.

• erpc_client_setup.h and erpc_client_setup.cpp files needs to be added into the “Matrix multiply”
example project to demonstrate the use of C-wrapped functions in this example.

• erpc_transport_setup.h and erpc_setup_rpmsg_lite_master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

• erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in order to
allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication supported
by eRPC. Some transports are applicable only to host PCs, while others are applicable only to embedded or
multicore systems. Most transports have corresponding client and server setup functions, in the setup folder.

• RPMsg-Lite is used as the transport layer for the communication between cores,
erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files needs to be added into the client project.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
16 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 8. Client infrastructure files

3.4.2.4 Client multicore infrastructure files

Because of the RPMsg-Lite (transport layer), it is also necessary to include RPMsg-Lite related files, which are
in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control the secondary
core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
17 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 9. Client multicore infrastructure files

3.4.2.5 Client user code

The client’s user code is stored in the main_core0.c file, located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7

The main_core0.c file contains the code for target board and eRPC initialization.

• After initialization, the secondary core is released from reset.
• When the secondary core is ready, the primary core initializes two matrix variables.
• The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the matrix multiply
application is implemented in erpc_error_handler.h and erpc_error_handler.cpp files.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
18 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_master_init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport, message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
 /* Invoke the erpcMatrixMultiply function */
 erpcMatrixMultiply(matrix1, matrix2, result_matrix);
 ...
 /* Check if some error occured in eRPC */
 if (g_erpc_error_occurred)
 {
 /* Exit program loop */
 break;
 }
 ...
}

Except for the application main file, there are configuration files for the RPMsg-Lite (rpmsg_config.h) and
eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
19 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 10. Client user code

3.4.3 Multiprocessor server application

The “Matrix multiply” eRPC server project for multiprocessor applications is located in the <MCUXpressoSDK_
install_dir>>/boards/<board_name>/multiprocessor_examples/ erpc_server_matrix_multiply_<transport_layer>
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The multiprocessor
server application requires server-related generated files (server shim code), server infrastructure files, and
the server user code. There is no need for server multicore infrastructure files (MCMGR and RPMsg-Lite). The
RPMsg-Lite transport layer is replaced either by SPI or UART transports. The following table shows the required
transport-related files per each transport type.

SPI <eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_slave.cpp
<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_
transport.hpp
<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_
transport.cpp

UART <eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp
<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_
transport.hpp
<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_
transport.cpp

Table 3. Transport-related eRPC files for the server side application

3.4.3.1 Server user code

The server’s user code is stored in the main_server.c file, located in the <MCUXpressoSDK_install_dir>/
boards/ <board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
20 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrix1, Matrix matrix2, Matrix result_matrix)
{
 ...
}
int main()
{
 ...
 /* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART
 driver operations */
 erpc_transport_t transport;
 transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
 ...
 /* MessageBufferFactory initialization */
 erpc_mbf_t message_buffer_factory;
 message_buffer_factory = erpc_mbf_dynamic_init();
 ...
 /* eRPC server side initialization */
 erpc_server_t server;
 server = erpc_server_init(transport, message_buffer_factory);
 ...
 /* Adding the service to the server */
 erpc_service_t service = create_MatrixMultiplyService_service();
 erpc_add_service_to_server(server, service);
 ...
 while (1)
 {
 /* Process eRPC requests */
 erpc_status_t status = erpc_server_poll(server)
 /* handle error status */
 if (status != kErpcStatus_Success)
 {
 /* print error description */
 erpc_error_handler(status, 0);
 ...
 }
 ...
 }
}

3.4.3.2 Multiprocessor client application

The “Matrix multiply” eRPC client project for multiprocessor applications is located in the
<MCUXpressoSDK_install_dir>/ boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_
<transport_layer>/iar/ folder.

Most of the multiprocessor application setup is the same as for the multicore application. The multiprocessor
server application requires client-related generated files (server shim code), client infrastructure files, and
the client user code. There is no need for client multicore infrastructure files (MCMGR and RPMsg-Lite). The
RPMsg-Lite transport layer is replaced either by SPI or UART transports. The following table shows the required
transport-related files per each transport type.

SPI <eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_master.
cpp
<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_
transport.hpp
<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_
transport.cpp

Table 4. Transport-related eRPC files for the client side application

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
21 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

UART <eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp
<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_
transport.hpp
<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_
transport.cpp

Table 4. Transport-related eRPC files for the client side application...continued

3.4.3.2.1 Client user code

The client’s user code is stored in the main_client.c file, located in the <MCUXpressoSDK_install_dir>/
boards/<board_name>/multiprocessor_examples/ erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART
 driver operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport,message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
 /* Invoke the erpcMatrixMultiply function */
 erpcMatrixMultiply(matrix1, matrix2, result_matrix);
 ...
 /* Check if some error occured in eRPC */
 if (g_erpc_error_occurred)
 {
 /* Exit program loop */
 break;
 }
 ...
}

3.4.4 Running the eRPC application

Follow the instructions in Getting Started with MCUXpresso SDK (document MCUXSDKGSUG) (located in the
<MCUXpressoSDK_install_dir>/docs folder), to load both the primary and the secondary core images into the
on-chip memory, and then effectively debug the dual-core application. After the application is running, the serial
console should look like:

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
22 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Figure 11. Running the eRPC application

For multiprocessor applications that are running between PC and the target evaluation board or between two
boards, follow the instructions in the accompanied example readme files that provide details about the proper
board setup and the PC side setup (Python).

4 Other uses for an eRPC implementation

The eRPC implementation is generic, and its use is not limited to just embedded applications. When creating
an eRPC application outside the embedded world, the same principles apply. For example, this manual can be
used to create an eRPC application for a PC running the Linux operating system. Based on the used type of
transport medium, existing transport layers can be used, or new transport layers can be implemented.

For more information and erpc updates see the github.com/EmbeddedRPC.

5 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
23 / 27

https://github.com/EmbeddedRPC

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6 Revision history

To provide the most up-to-date information, the revisions of our documents on the Internet are the most current.
Your printed copy may be an earlier revision.

This revision history table summarizes the changes contained in this document since the last release.

Revision
number

Date Substantive changes

0 09/2015 Initial release

1 04/2016 Updated to Kinetis SDK v.2.0 and Multicore SDK v.1.1.0

2 09/2016 Updated to Kinetis SDK v.2.0 and Multicore SDK v.2.0.0

3 09/2016 Updated to Multicore SDK v.2.1.0 and eRPC v.1.3.0
Added new sections covering multiprocessor applications

4 03/2017 Updated to Multicore SDK v.2.2.0 and eRPC v.1.4.0

5 11/2017 Updated to Multicore SDK v.2.3.0 and eRPC v.1.5.0
MCUXpresso SDK 2.3.0 release

6 05/2018 Editorial updates for MCUXpresso SDK v2.3.1 and MCUXpresso SDK
v.2.4.0

7 12/2019 Editorial and other updates for MCUXpresso SDK v2.7.0

8 01 June 2021 Minor updates for MCUXpresso SDK v2.10.0

9 01 June 2022 Minor updates for MCUXpresso SDK v2.12.0

10 19 December 2022 Editorial and other updates for MCUXpresso SDK v2.13.0

11 27 July 2023 Editorial and other updates for MCUXpresso SDK v2.14.0

12 17 June 2024 Editorial and legal information updates for MCUXpresso SDK v2.16.000

Table 5. Revision history

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
24 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
25 / 27

mailto:PSIRT@nxp.com

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

IAR — is a trademark of IAR Systems AB.
Kinetis — is a trademark of NXP B.V.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 12 — 17 June 2024
26 / 27

NXP Semiconductors MCSDKERPCGSUG
eRPC Getting Started User Guide

Contents
1 Overview ...2
2 Create an eRPC application2
3 eRPC example ..2
3.1 Designing the eRPC application3
3.2 Creating the IDL file .. 3
3.3 Using the eRPC generator tool 4
3.4 Create an eRPC application5
3.4.1 Multicore server application5
3.4.1.1 Server project basic source files5
3.4.1.2 Server related generated files 6
3.4.1.3 Server infrastructure files9
3.4.1.4 Server multicore infrastructure files 10
3.4.1.5 Server user code ... 11
3.4.2 Multicore client application 13
3.4.2.1 Client project basic source files 13
3.4.2.2 Client-related generated files14
3.4.2.3 Client infrastructure files 16
3.4.2.4 Client multicore infrastructure files17
3.4.2.5 Client user code .. 18
3.4.3 Multiprocessor server application 20
3.4.3.1 Server user code ... 20
3.4.3.2 Multiprocessor client application21
3.4.4 Running the eRPC application 22
4 Other uses for an eRPC implementation 23
5 Note about the source code in the

document ..23
6 Revision history ...24

Legal information ...25

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 17 June 2024
Document identifier: MCSDKERPCGSUG

	1 Overview
	2 Create an eRPC application
	3 eRPC example
	3.1 Designing the eRPC application
	3.2 Creating the IDL file
	3.3 Using the eRPC generator tool
	3.4 Create an eRPC application
	3.4.1 Multicore server application
	3.4.1.1 Server project basic source files
	3.4.1.2 Server related generated files
	3.4.1.3 Server infrastructure files
	3.4.1.4 Server multicore infrastructure files
	3.4.1.5 Server user code

	3.4.2 Multicore client application
	3.4.2.1 Client project basic source files
	3.4.2.2 Client-related generated files
	3.4.2.3 Client infrastructure files
	3.4.2.4 Client multicore infrastructure files
	3.4.2.5 Client user code

	3.4.3 Multiprocessor server application
	3.4.3.1 Server user code
	3.4.3.2 Multiprocessor client application
	3.4.3.2.1 Client user code

	3.4.4 Running the eRPC application

	4 Other uses for an eRPC implementation
	5 Note about the source code in the document
	6 Revision history
	Legal information
	Contents

