Armadillo-400 シリーズ ソフトウェアマニュアル

Version 1.1.0 2010/04/28

株式会社アットマークテクノ [http://www.atmark-techno.com] Armadillo 開発者サイト [http://armadillo.atmark-techno.com]

Armadillo-400 シリーズソフトウェアマニュアル

株式会社アットマークテクノ

060-0035 札幌市中央区北5条東2丁目 AFT ビル6F TEL 011-207-6550 FAX 011-207-6570

製作著作 © 2010 Atmark Techno, Inc.

Version 1.1.0 2010/04/28

目次

1.	は	じめ	に	9
		1.1.	対象となる読者	9
		1.2.	本書の構成	9
		1.3.	表記について	10
			1.3.1. フォント	10
			1.3.2. コマンド入力例	10
			1.3.3. アイコン	10
		1.4.	謝辞	11
		1.5.	ソフトウェア使用に関しての注意事項	11
		1.6.	商標について	11
2.	シ	ステ	ム概要	12
	-	2.1.	Armadillo-400 シリーズ基本什様	12
		22	Armadillo-420 ベーシックモデル基本仕様	13
		23	Armadillo-440 液晶モデル基本什様	15
		24	メモリマップ	19
		25	ソフトウェア構成	20
		2.0.	ク51 ブートローダー	20
			250 h - 2 h	20
			$253.7 - t - 5 \times k$	20
			2.5.5. エーゲー ノント	21
		26	ブートモード	21
З	作	Z.O. 業の	シート ビート	22
0.	IF	<u>ዱ</u> ማ 21	池信するちの	22
		3.1.	宇備する000	22
		ວ.८. ຊີຊ	- シリアル通信ソフトウェアの設定	21
Л	閂	J.J. <u></u> 森理	クリアル通信アンドフェアの改定	24
4.	[]]]	尤塚 11	現の半開	25
		4.1. 12	ノロス開光環境バソノ ノのイノスト ル	25
		4.C. 10	Aundre-Dist のビルトに必要なバッケークのインストール	20
Б	7	4.J.	ショマエリの聿を協っ古法	20
5.	/	59	フェメビリの音と使んガム	20
		5.1.	ノノッシュメモリの音さ込み限以について	20
		<u>э.</u> ∠.	ッソフローターの1 ノストール	29
			5.2.1. 『F未用 PC か LINUX の場合	29
		БЭ	5.2.2. 『F耒田 PU か WINdows の場合	29
		J.J.	タリノローターを使用してノブッシュスモリを音さ換える	29
			5.3.1. 竿順	20
			5.3.2. 作業用 PC か LINUX の場合	30
		Г 4	5.3.3. 作業用 PC か WINdows の場合	31
		5.4.	TTTPOIを使用してフラッシュメモリを書さ換える	32
		5.5.	NetTIaSN を使用してフラッシュメモリを書さ換える	32
		5.6.	ノートローターを出何状態に戻り	33
			5.6.1. 準備	33
			5.6.2. 作美用 PC か Linux の場合	33
~			5.6.3. 作業用 PC が Windows の場合	35
6.	Ľ	ルド		36
		6.1.	カーネルイメージとユーサーフンドイメージのビルド	36
			6.1.1. ソースコードの準備	36
			(6.1.2. コンフィキュレーション	37
			6.1.3. ビルド	38
			6.1.4. イメージをカスタマイスする	39

6.1.5. ユーザーランドイメージにアプリケーションを追加する	39
6.2. ブートローダーイメージのビルド	39
6.2.1. ソースコードの準備	40
6.2.2. ビルド	40
7. カーネル/ユーザーランドの配置	41
7.1. TFTP サーバーに配置する	41
7.1.1.ファイルの配置	41
7.1.2. ブートオプション	41
7.2. ストレージに配置する	42
7.2.1. パーティション分割	42
7.2.2. ファイルシステムの作成	43
7.2.3. カーネルイメージの配置	44
7.2.4. ルートファイルシステムの構築	45
7.2.5. カーネルパラメータの設定	47
7.3. 設定を元に戻す	47
8. Linux カーネルデバイスドライバー仕様	49
8.1. UART	49
8.2. Ethernet	49
8.3. SD/MMC/SDIO ホスト	50
8.4. USB 2.0 ホスト	50
8.5. フレームバッファ	50
8.6. LED バックライト	51
8.7. タッチスクリーン	51
8.8. オーディオ	51
8.9. GPIO	52
8.9.1. GPIO sysfs	52
8.9.2. Armadillo-200 シリーズ互換 GPIO ドライバー	53
8.10. LED	54
8.10.1. LED クラス	54
8.10.2. Armadillo-200 シリーズ互換 LED ドライバー	55
8.11. ボタン	56
8.12. リアルタイムクロック	57
8.13. ウォッチドッグタイマー	57
8.14. パワーマネジメント	57
8.14.1. スリープ中の外部デバイスの扱いについて	58
A. Hermit-At ブートローダー	59
A.1. version	59
A.1.1. version 使用例	59
A.2. info	59
A.2.1. info 使用例	59
A.3. memmap	60
A.3.1. memmap 使用例	60
A.4. mac	60
A.4.1. mac 使用例	60
A.5. md5sum	60
A.5.1. md5sum 使用例	61
A.6. erase	61
A.6.1. erase 使用例	61
A.7. setenv と clearenv	61
A.7.1. setenv/clearenv 使用例	62
A.7.2. Linux 起動オプション	62
A.8. setbootdevice	62
A.8.1. setbootdevice の使用例	63

A.9. frob	63
A.10. tftpdl	64
A.10.1. tdtpdl の使用例	64
A.11. tftpboot	65
A.11.1. tdtpboot の使用例	65
A.12. boot	66
A.12.1. boot 使用例	66
A.13. バージョンに関する注意	66
 A.11.1. tdtpboot の使用例 A.12. boot A.12.1. boot 使用例 A.13. バージョンに関する注意 	65 66 66 66

図目次

2.1. Armadillo-420/440 ブロック図	13
2.2. Armadillo-420 ベーシックモデル見取り図	14
2.3. Armadillo-440 液晶モデル見取り図	17
3.1. Armadillo-440 液晶モデル接続例	23
3.2. Armadillo-420 ベーシックモデル接続例	24
4.1. インストールコマンド	25
4.2. インストール情報表示コマンド	26
43 クロス開発用ライブラリパッケージの作成	27
44 クロス開発用ライブラリパッケージのインストール	27
45 ant-cross コマンド	27
51 ダウンローダーのインストール (Linux)	29
52 ダウンロードコマンド	30
5.2. ダウンロードコマンド(ポート指定)	30
5.5. ダウンロードコマンド (不 「追定」	30
5.5. Hermit-Δt Win32 · Download ウィンドウ	31
5.6. Hermit-At Win32:Download ダイアログ	21
5.0. Hermit-At Win52:download ショブログ	32
5.7. tripar コマンド例 5.8. notflach コマンド例	33
5.0. The finds if コマンド例	24
5.9. Shoehorn コマンドログ	24
5.10 . Shoehorn ± 22	25
5.17. Hermit At Win32: shoohorn ダイアログ	35
5.12. Ternint-At Wins2、Shoenon アイテロア	20
0.1. ノースコート牟浦	20
6.2. Almark Dist のこルト	30 20
0.3. Alinark-Dist のコノノイ キュレーション	39
10.4. ユーリーフノト1 メーンのガスタマ1 ス	39
0.5. Hermit At ビルド例	40
	40
7.1. LILPDOOL コマント	41
7.2. LI LPDOOL コマノト別	42
7.3. ハーナインヨン分割于順	43
7.4. ノアイルンステム作成于順	44
7.5. ノーイル1 メーンの配直	45
7.6. Debian アーカイフによるルートファイルンステムの備発例	40
7.7. Atmark-DIST 1 メーンによるルートファイルンステムの博楽例	47
7.8. 起動ナハ1 人の指定	47
7.9. ルートノアイルンステム指定例	41
7.10. 起動ナハイスにノフツシュメモリを指定する	47
/. . Clearenv で起動オノションを初期状態に戻す	48
A.I. version 備义	59
A.2. version の使用例	59
A.3. Info 構文	59
A.4. Info の使用例	59
A.5. memmap 備文	60
A.b. memmap の使用例	60
A./. mac 備又	60
A.8. mac の使用例	60
A.9. mdbsum 備又	60
A.IU. mdbsum の使用例	61
A.II. erase 備又	61

2. erase の使用例
5. setbootdevice 構文
6. ブートデバイスにフラッシュメモリを指定する
7. ブートデバイスに TFTP サーバーを指定する
8. ブートデバイスに SD/MMC カードを指定する
9. tftpdl 構文
0. tftpdl の使用例 64
1. tftpboot 構文
2. tftpboot の使用例
3. boot 構文
4. boot の使用例

表目次

11 使用しているフォント	10
1.1. 使用しているフォント	10
1.2. 扱バノロンノトC关门煤税の因际 1.3 コマンド入力例での劣略表記	10
7.3. コマンドハカ別での首唱扱記	12
2.1. Arriadino 400 クラック ス本本に像	12
2.2. (TO) フリンコン C) ユール座本 L 像	14
2.3. A Thuand 420 、 シック ビッル 温波 1 シック シェー ハビン 記述	15
2.5 Armadillo-440 液晶モデル拡張インターフェースピン配置	18
2.6. Armadillo-420 フラッシュメモリ メモリマップ	19
27 Armadillo-440 フラッシュメモリ メモリマップ	19
28 ジャンパの設定	21
3.1. シリアル通信設定	24
4.1. Atmark-Dist のビルドに必要なパッケージー覧	26
5.1. リージョン名と対応するイメージファイル	28
5.2. ダウンローダー一覧	29
5.3. リージョンとオプションの対応	32
5.4. リージョンとデバイスファイルの対応	33
6.1. プロダクト名一覧	37
7.1. microSD システムパーティション例	42
7.2. カーネルイメージのダウンロード先 URL	45
7.3. Debian アーカイブのダウンロード先 URL	46
7.4. Atmark-Dist イメージのダウンロード先 URL	46
8.1. シリアルインターフェースとデバイスファイルの対応	49
8.2. フレームバッファとデバイスファイルの対応	50
8.3. タッチスクリーンイベント	51
8.4. GPIO_NAME と GPIO ピンの対応	52
8.5. GPIO 入出力方向の設定	53
8.6. Armadillo-200 シリーズ互換 GPIO ドライバー GPIO 一覧	53
8.7. Armadillo-200 シリーズ互換 GPIO ドライバーデバイスファイル	54
8.8. Armadillo-200 シリーズ互換 GPIO ドライバー ioctl コマンド	54
8.9. LED 一覧	55
8.10. LED ノード	55
8.11. LED 操作コマンド	55
8.12. Armadillo-440 液晶モデルボタンイベント	56
8.13. スリープモード	57
8.14. ウェイクアップ要因の指定	58
A.1. よく使用される Linux 起動オプション	62
A.2. trob コマンド	63
A.3. tftpdl オブション	64

1.はじめに

Armadillo シリーズは、ARM コアを搭載した高性能・低消費電力な小型汎用 CPU ボードです。標準 OS に Linux (Kernel 2.6 系) を採用しており、豊富なソフトウェア資産と実績のある安定性を提供します。また、全ての製品が標準でネットワークインターフェースを搭載し、Linux のネットワークプロトコルスタックと組み合わせて、容易にネットワーク対応機器の開発を実現します。

Armadillo-400 シリーズは、同クラスの従来製品より性能を向上しつつも、低消費電力を実現したモデルです。Armadillo-400 シリーズには、低価格の Armadillo-420 と拡張ボードによってマルチメディア機能を追加可能な Armadillo-440 の 2 種類の製品があります。

Armadillo-400 シリーズは、基本機能としてシリアル、Ethernet、USB、ストレージ(microSD)、 GPIO など組み込み機器に必要とされる機能を備えています。Armadillo-440 はそれらに加え、LCD、 タッチスクリーン、オーディオなどのマルチメディア機能を、拡張ボードによって追加可能です。さら に、Armadillo-400 シリーズでは、オプションモジュールによってリアルタイムクロックや無線 LAN などの機能を追加することができます。

Armadillo-440 に LCD 拡張ボードをセットにしたモデルを Armadillo-440 液晶モデルと呼びます。 また、Armadillo-420 に RTC オプションモジュールをセットにしたモデルを Armadillo-420 ベーシッ クモデルと呼びます。

本書には、 Armadillo-400 シリーズのソフトウェアをカスタマイズするために必要な情報が記載されています。

出荷状態のソフトウェアの操作方法については、「Armadillo-440 液晶モデル 開発セット スタート アップガイド」または「Armadillo-420 ベーシックモデル 開発セット スタートアップガイド」をご参 照ください。また、ハードウェア仕様に関しては、「Armadillo-400 シリーズ ハードウェアマニュアル」 をご参照ください。

以降、本書では他の Armadillo シリーズにも共通する記述については、製品名を Armadillo と表記します。

1.1. 対象となる読者

本書は、Armadillo を使用して組み込みシステムを開発される方のうち、 Armadillo のソフトウェア をカスタマイズされる方を対象としています。

1.2. 本書の構成

本書は、1 章から 8 章および Appendix から構成されています。

1章から3章で、開発を始めるための準備について取り上げます。

4章から6章で、開発環境を構築し、ブートローダー、カーネル、ユーザーランドのソースコードから一連のイメージファイルを作成する方法と、イメージファイルをターゲットとなる Armadillo に書き込む方法について説明します。

7 章では、カーネルとユーザーランドを Armadillo の内蔵 フラッシュメモリ以外の場所に配置する方 法について説明します。

8章では、Armadillo 独自の Linux カーネルデバイスドライバーの仕様について記述します。

最後に、Appendix ではブートローダーの機能について説明します。

1.3. 表記について

1.3.1. フォント

本書では以下のような意味でフォントを使いわけています。

表 1.1 使用しているフォント

フォント例	説明	
本文中のフォント	本文	
[PC ~]\$ ls	プロンプトとユーザ入力文字列	
text	編集する文字列や出力される文字列。またはコメント	

1.3.2. コマンド入力例

本書に記載されているコマンドの入力例は、表示されているプロンプトによって、それぞれに対応し た実行環境を想定して書かれています。「/」の部分はカレントディレクトリによって異なります。各ユー ザのホームディレクトリは「~」で表わします。

表 1.2 表示プロンプトと実行環境の関係

プロンプト	コマンドの実行環境
[PC /]#	作業用 PC 上の root ユーザで実行
[PC /]\$	作業用 PC 上の一般ユーザで実行
[armadillo /]#	Armadillo 上の root ユーザで実行
[armadillo /]\$	Armadillo 上の一般ユーザで実行
hermit>	Armadillo 上の保守モードで実行

コマンド中で、変更の可能性のあるものや、環境により異なるものに関しては以下のように表記しま す。適時読み替えて入力してください。

表 1.3 コマンド入力例での省略表記

表記	説明
[version]	ファイルのバージョン番号

1.3.3. アイコン

本書では以下のようにアイコンを使用しています。

役に立つ情報を記載します。

1.4. 謝辞

Armadillo で使用しているソフトウェアは Free Software / Open Source Software で構成されてい ます。Free Software / Open Source Software は世界中の多くの開発者の成果によってなりたってい ます。この場を借りて感謝の意を表します。

1.5. ソフトウェア使用に関しての注意事項

本製品に含まれるソフト 本製品に含まれるソフトウェア(付属のドキュメント等も含みます)は、現 ウェアについて 状のまま(AS IS)提供されるものであり、特定の目的に適合することや、そ の信頼性、正確性を保証するものではありません。また、本製品の使用に よる結果についてもなんら保証するものではありません。

1.6. 商標について

Armadillo は株式会社アットマークテクノの登録商標です。その他の記載の商品名および会社名は、各社・各団体の商標または登録商標です。

2.システム概要

ソフトウェアの開発を開始する前に、本章ではシステム概要について解説します。

2.1. Armadillo-400 シリーズ基本仕様

Armadillo-400 シリーズの標準状態^[1]での基本仕様を「表 2.1. Armadillo-400 シリーズ基本仕様」 に示します。また、ブロック図を「図 2.1. Armadillo-420/440 ブロック図」に示します。

	Armadillo-420	Armadillo-440	
プロセッサ	Freescale i.MX25	57 (ARM926EJ-S)	
	命令/データキャッシュ 16KByte/16KByte		
	内部 SRAM 128KByte		
システムク	CPU コアクロ・	ック:400MHz	
ロック	BUS クロック	ク:133MHz	
RAM	LPDDR SDRAM:64MByte (16bit 幅)	LPDDR SDRAM:128MByte (16bit 幅)	
ROM	NOR フラッシュメモリ:16MByte (16bit 幅)	NOR フラッシュメモリ:32MByte (16bit 幅)	
シリアル	RS232C レベル×1 ポート		
	フロー制御ピン有	写り (フルモデム)	
	最大 230	0.4 kbps	
	3.3V 1/0 レヘ	ベル×2 ポート	
	フロー制御	甲ピン無し	
	最大 4Mbps		
USB 2.0 ホス	High Spee	d×1 ポート	
<u>۲</u>	Full Speed	1×1 ポート	
LAN	10BASE-T/100BASE-TX×1 ポート		
ストレージ	microSD×1		
	4bit 幅、最大	た 208Mbps	
GPIO	3.3V I/O レベル×18 ピン		
プログラマブ ル LED	赤×1、緑	x1、黄x1	
ボタン	タクトス	 イッチx1	

表 2.1 Armadillo-400 シリーズ基本仕様

^[1]Armadillo-400 シリーズは IO ピンのマルチプレクスにより機能を変更することができます。詳しくは、「Armadillo-400 シリーズ ハードウェアマニュアル」をご参照ください。

図 2.1 Armadillo-420/440 ブロック図

2.2. Armadillo-420 ベーシックモデル基本仕様

Armadillo-420 ベーシックモデルは、Armadillo-420 に Armadillo-400 RTC オプションモジュール を接続したモデルです。RTC オプションモジュールの基本仕様を、「表 2.2. RTC オプションモジュール 基本仕様」に示します。

表 2.2 RTC オプションモジュール基本仕様

	Armadillo-400 RTC オプションモジュール
リアルタイムクロック	スーパーキャパシタによるバックアップ

Armadillo-420 ベーシックモデルの見取り図を「図 2.2. Armadillo-420 ベーシックモデル見取り図」 に示します。また、CON9 および CON14 のピン配置を「表 2.3. Armadillo-420 ベーシックモデル拡 張インターフェースピン配置」に示します。各インターフェースの配置場所等を確認してください。

図 2.2 Armadillo-420 ベーシックモデル見取り図

ピン番号	機能	備考	
CON9 1	GPIO	100 kΩ プルアップ	
CON9 2	GPIO	100 kΩ プルアップ	
CON9 3	シリアルインターフェース 2 RXD		
CON9 4	シリアルインターフェース 3 RXD		
CON9 5	シリアルインターフェース 2 RXD		
CON9 6	シリアルインターフェース 3 TXD		
CON9 7	+3.3V		
CON9 8	+3.3V		
CON9 9	GND		
CON9 10	GND		
CON9 11	GPIO	100 kΩ プルアップ	
CON9 12	GPIO	100 kΩ プルアップ	
CON9 13	GPIO	100 kΩ プルアップ	
CON9 14	GPIO	100 kΩ プルアップ	
CON9 15	GPIO	100 kΩ プルアップ	
CON9 16	GPIO	100 kΩ プルアップ	

表 2.3 Armadillo-420 ベーシックモデル拡張インターフェース	、ピン配置
--	-------

ピン番号	機能	備考	
CON9 17	GPIO	100 kΩ プルアップ	
CON9 18	GPIO	100 kΩ プルアップ	
CON9 19	GND		
CON9 20	+3.3V		
CON9 21	GPIO	100 kΩ プルアップ	
CON9 22	GPIO	100 kΩ プルアップ	
CON9 23	GPIO	100 kΩ プルアップ	
CON9 24	GPIO	100 kΩ プルアップ	
CON9 25	GPIO	100 kΩ プルアップ	
CON9 26	GPIO	100 kΩ プルアップ	
CON9 27	GPIO		
CON9 28	GPIO		
CON14 1	+3.3V		
CON14 2	GND		
CON14 3	I2C2 SCL	22 kΩ プルアップ/オープンドレイン	
CON14 4	I2C2 SDA	22 kΩ プルアップ/オープンドレイン	

シリアルインターフェース 2 と 3 は +3.3V IO レベルとなっています。 オプション^[2]の RS232C レベル変換アダプタを使用することで、RS232C レベルで使用することができます。

RS232C レベル変換アダプタは、シリアルインターフェース 2 に接続す る場合は、RS232C レベル変換アダプタの 1 番ピン (黄色いケーブル)と CON9 1 ピンが合うように、シリアルインターフェース 3 に接続する場 合は、RS232C レベル変換アダプタの 1 番ピンと CON9 2 ピンが合う ように接続してください。

2.3. Armadillo-440 液晶モデル基本仕様

Armadillo-440 液晶モデルは、Armadillo-440 に Armadillo-440 LCD 拡張ボードを接続したモデル です。拡張ボードの基本仕様を、「表 2.4. 拡張ボード基本仕様」に示します。

	Armadillo-440 LCD 拡張ボード	
オーディオ	Playback(ステレオ) / Capture(モノラル)	
LCD	解像度 480 × 272 ピクセル	
	RGB 565 カラー	
タッチスクリーン	4 線抵抗膜式	
リアルタイムクロック	スーパーキャパシタによるバックアップ	
ボタン	タクトスイッチ×3	

表 2.4 拡張ボード基本仕様

^[2]RS232C レベル変換アダプタはオプション品としてご購入いただけます。また、開発セットには付属しています。

Armadillo-440 液晶モデルの見取り図を「図 2.3. Armadillo-440 液晶モデル見取り図」に示します。 また、CON9 および CON14 のピン配置を「表 2.5. Armadillo-440 液晶モデル拡張インターフェース ピン配置」に示します。各インターフェースの配置場所等を確認してください。

図 2.3 Armadillo-440 液晶モデル見取り図

ピン番号	機能	備考	
CON9 1	GPIO	100 kΩ プルアップ	
CON9 2	GPIO	100 kΩ プルアップ	
CON9 3	シリアルインターフェース 2 RXD		
CON9 4	シリアルインターフェース 3 RXD		
CON9 5	シリアルインターフェース 2 RXD		
CON9 6	シリアルインターフェース 3 TXD		
CON9 7	+3.3V		
CON9 8	+3.3V		
CON9 9	GND		
CON9 10	GND		
CON9 11	GPIO	100 kΩ プルアップ	
CON9 12	GPIO	100 kΩ プルアップ	
CON9 13	GPIO	100 kΩ プルアップ	
CON9 14	GPIO	100 kΩ プルアップ	
CON9 15	GPIO	100 kΩ プルアップ	
CON9 16	GPIO	100 kΩ プルアップ	
CON9 17	GPIO	100 kΩ プルアップ	
CON9 18	GPIO	100 kΩ プルアップ	
CON9 19	GND		
CON9 20	+3.3V		
CON9 21	GPIO	100 kΩ プルアップ	
CON9 22	GPIO	100 kΩ プルアップ	
CON9 23	GPIO	100 kΩ プルアップ	
CON9 24	GPIO	100 kΩ プルアップ	
CON9 25	GPIO	100 kΩ プルアップ	
CON9 26	GPIO	100 kΩ プルアップ	
CON9 27	GPIO		
CON9 28	GPIO		
CON14 1	+3.3V		
CON14 2	GND		
CON14 3	I2C2 SCL	22 kΩ プルアップ/オープンドレイン	
CON14 4	I2C2 SDA	22 kΩ プルアップ/オープンドレイン	

表 2.5 Armadillo-440 液晶モデル拡張インターフェースピン配置

シリアルインターフェース 2 と 3 は +3.3V IO レベルとなっています。 オプション^[3]の RS232C レベル変換アダプタを使用することで、RS232C レベルで使用することができます。

RS232C レベル変換アダプタは、シリアルインターフェース 2 に接続す る場合は、RS232C レベル変換アダプタの 1 番ピン (黄色いケーブル)と CON9 1 ピンが合うように、シリアルインターフェース 3 に接続する場

^[3]RS232C レベル変換アダプタはオプション品としてご購入いただけます。また、開発セットには付属しています。

合は、RS232C レベル変換アダプタの 1 番ピンと CON9 2 ピンが合う ように接続してください。

CON14 3 と CON14 4 ピンは linux-2.6.26-at7 (linuxa400-1.00.bin.gz) では デフォルトで GPIO として使用していました。 linux-2.6.26-at8 (linux-a400-1.01.bin.gz) 以降では、デフォルトの設定 で I2C2 として使用するよう変更されました。CON14 3 と CON14 4 ピ ンをご利用になる際は、デフォルトの設定が変更されているためご注意く ださい。

2.4. メモリマップ

Armadillo-400 シリーズは、標準で「表 2.6. Armadillo-420 フラッシュメモリ メモリマップ」、 「表 2.7. Armadillo-440 フラッシュメモリ メモリマップ」に示すようにフラッシュメモリを分割して使 用します。

物理アドレス	リージョン名	サイズ	説明
0xa0000000	bootloader	128KB	ブートローダーイメージを格納します
0xa001ffff			
0xa0020000	kernel	2MB	カーネルイメージを格納します
0xa021ffff			
0xa0220000	userland	13.75MB	ユーザーランドイメージを格納します
OxaOfdffff			
0xa0fe0000	config	128KB	設定情報を保存します
0xa0ffffff			

表 2.6 Armadillo-420 フラッシュメモリ メモリマップ

表 2.7 Armadillo-440 フラッシュメモリ メモリマップ

物理アドレス	リージョン名	サイズ	説明
0xa0000000	bootloader	128KB	ブートローダーイメージを格納します
0xa001ffff			
0xa0020000	kernel	2MB	カーネルイメージを格納します
0xa021ffff			
0xa0220000	userland	29.75MB	ユーザーランドイメージを格納します
Oxalfdffff			

物理アドレス	リージョン名	サイズ	説明
0xalfe0000	config	128KB	設定情報を保存します
0xa1fffff			

2.5. ソフトウェア構成

Armadillo-400 シリーズでは、以下のソフトウェアによって動作します。

2.5.1. ブートローダー

ブートローダーは、電源投入後に最初に動作するソフトウェアです。Armadillo-400 シリーズでは Hermit-At ブートローダー (以降、単に Hermit-At と記述します) を使用します。

Hermit-At にはオートブートモードと保守モードの2つの動作モードがあります。オートブートモードでは、あらかじめ指定された場所からカーネルイメージを RAM 上にロードし、カーネルをブートします。保守モードでは、フラッシュメモリの更新、ブートオプションの設定などを行います。詳しくは、付録 A Hermit-At ブートローダーを参照してください。

ブートローダーは、必ずフラッシュメモリのブートローダーリージョンに書き込まれている必要があります。

2.5.2. カーネル

Armadillo-400 シリーズでは、標準のカーネルとして Linux 2.6 系を使用します。

標準ではカーネルイメージはフラッシュメモリのカーネルリージョンに配置されます。カーネルイメージは、Hermit-At のブートオプションを変更することで、ストレージ(microSD)または TFTP サーバー 上にも配置することができます。

2.5.3. ユーザーランド

Armadillo-400 シリーズでは、標準のユーザーランドのルートファイルシステムは Atmark-Dist と呼ばれるソースコードベースのディストリビューションから作成した initrd^[4] イメージを使用します。

また、標準ユーザーランドの他に、オプションとして Debian GNU/Linux ベースのユーザーランドも 提供しています。

標準では initrd イメージはフラッシュメモリのユーザーランドリージョンに配置され、Hermit-At に よって RAM disk に展開されます。initrd イメージは、 Hermit-At のブートオプションを変更すること で、TFTP サーバー上にも配置することができます。

ルートファイルシステムは、カーネルパラメータを設定することで、RAM disk 以外にストレージ (microSD/USB) または NFS サーバー^[5]上に配置することもできます。

カーネルとユーザーランドをフラッシュメモリ以外に配置する方法については、「7. カーネル/ユーザー ランドの配置」で詳しく説明します。

^[4]initial RAM disk。一般的な Linux システムでは、initrd は HDD などにあるルートファイルシステムをマウントする前に一時 的に使用する「ミニ」ルートファイルシステムとして使用されます。Armadillo-400 シリーズでは、initrd をそのままルートファ イルシステムとして使用します。

^[5]カーネルで NFS サポートを有効にした場合

2.5.4. ダウンローダー

Armadillo の内蔵フラッシュメモリを書き換えるために、作業用 PC で動作するアプリケーションです。

Linux PC 上で動作するダウンローダーには Hermit-At ダウンローダーと Shoehorn-At があります。 Hermit-At ダウンローダーは、ターゲットとなる Armadillo と協調動作を行い、Armadillo の内蔵フ ラッシュメモリを書き換えることができます。Shoehorn-At は、ブートローダーの復旧に使用します。

Windows PC 上で動作するダウンローダーは、Hermit-At Win32 と呼びます。 Hermit-At Win32 は、ターゲットとなる Armadillo の内蔵フラッシュメモリを書き換える機能と、ブートローダーを復旧 するための機能を両方有しています。

2.6. ブートモード

Armadillo-400 シリーズは、JP1 の設定によってオンボードフラッシュメモリブートモードと、UART ブートモードを選択することができます。

オンボードフラッシュメモリブートモードでは、フラッシュメモリのブートローダー領域に配置され たブートローダーが起動されます。

標準のブートローダーである Hermit-At では、JP2 の設定によって自動でカーネルをブートするオー トブートモードか、各種設定を行うための保守モードを選択することができます。

なお、JP2 の設定によってオートブートモードが選択されている場合でも、起動時に SW1 が押下されている時は Hermit-At のオートブートキャンセル機能により保守モードで起動します。

UART ブートモードは、フラッシュメモリのブートローダーが壊れた場合など、システム復旧のため に使用します。詳しくは、「5.6. ブートローダーを出荷状態に戻す」を参照してください。

Armadillo-400 シリーズの各ジャンパ設定でのブートモードを「表 2.8. ジャンパの設定」に示します。

JP1	JP2	ブートモード
オープン	オープン	オンボードフラッシュメモリブート/オートブートモード
オープン	ショート	オンボードフラッシュメモリブート/保守モード
ショート	-	UART ブートモード

表 2.8 ジャンパの設定

3.作業の前に

3.1. 準備するもの

Armadillo-400 シリーズを使用した組み込みシステム開発には、以下の機材を準備する必要があります。

- 作業用 PC Debian GNU/Linux もしくは Windows が動作し、1 ポート以上のシリアルイン ターフェースを持つ PC です。
- シリアルクロス Armadillo と作業用 PC を接続するための、D-Sub9 ピン(メス メス)のクロス ケーブル 接続用ケーブルがです。

シリアル通信ソ Linux では「minicom」、Windows では「Tera Term Pro」などです。Armadillo フトウェア を制御するために使用します。作業用 PC にインストールしてください。

また、以下の機材があれば、より効率的に開発を進めることができます。

LAN ケー Armadillo と LAN を経由した通信を行う場合に必要となります。作業用 PC と Armadillo ブル は、スイッチングハブを介して接続してください^[1]。

3.2. 接続方法

「図 3.1. Armadillo-440 液晶モデル接続例」もしくは「図 3.2. Armadillo-420 ベーシックモデル接 続例」に示す接続例を参考に、Armadillo と作業用 PC および周辺機器を接続してください。

^[1]Armadillo-400 シリーズは Auto MDIX に対応しているため、作業用 PC と LAN ケーブルで直接接続することもできます。

図 3.1 Armadillo-440 液晶モデル接続例

3.3. シリアル通信ソフトウェアの設定

作業用の PC から Armadillo のシリアルコンソールに接続する場合、作業用 PC のシリアル通信ソフトウェアの設定を、「表 3.1. シリアル通信設定」のように設定してください。

項目	設定
転送レート	115,200 bps
データ長	8 bit
ストップビット	1 bit
パリティ	なし
フロー制御	なし

表 3.1 シリアル通信設定

4.開発環境の準備

本章では、Armadillo のソフトウェア開発を行うための開発環境を、作業用 PC に構築する方法につ いて説明します。

Armadillo-400 シリーズのソフトウェア開発には、Debian 系の Linux 環境^[1] (Debian/GNU Linux 5.0 コードネーム lenny を標準とします) が必要です。

作業用 PC が Windows の場合、Windows 上に仮想的な Linux 環境を構築する必要があります。

Windows 上に Linux 環境を構築する方法としては、「VMware」を推奨しています。VMware を使用 する場合は、開発に必要なソフトウェアがインストールされた状態の OS イメージ「ATDE(Atmark Techno Development Environment)」^[2]を提供しています。

Windows 上に Linux 環境を構築する手順については、「ATDE Install Guide」を参照してください。

ATDE には、標準で基本的な開発環境がインストールされているため、ATDE をお使いになる場合は、 「4.1. クロス開発環境パッケージのインストール」と「4.2. Atmark-Dist のビルドに必要なパッケージ のインストール」は、行う必要ありません。

4.1. クロス開発環境パッケージのインストール

Debian 系 Linux では、アプリケーションやライブラリの管理には Debian (deb) パッケージ を使用 します。

クロス開発を行うには、作業用 PC にクロス開発用のツールチェインのパッケージと、ターゲットアー キテクチャ用のライブラリをクロス開発用に変換したパッケージをインストールする必要があります。

Debian 系 Linux では ARM 用のアーキテクチャとして、arm と armel の 2 つがあります。これは、 ABI (Application Binary Interface) の違いによるものです。arm アーキテクチャは OABI を、armel アーキテクチャは EABI を意味します。

Armadillo-400 シリーズでは、EABI を標準の ABI としています。そのため、ターゲットアーキテク チャとして armel のパッケージをインストールする必要があります。

付属 DVD のクロス開発環境ディレクトリ (cross-dev/deb/) にクロス開発環境用のパッケージが用 意されています。Armadillo-400 シリーズで開発を行う場合、通常は、armel ディレクトリにある、 ARM EABI クロス開発環境をインストールしてください。

インストールは root ユーザーで行う必要があります。deb パッケージをインストールするには、 「図 4.1. インストールコマンド」のようにコマンドを実行します。

[PC ~]\$ sudo dpkg --install *.deb

図 4.1 インストールコマンド

^[1]Debian 系以外の Linux でも開発はできますが、本書記載事項すべてが全く同じように動作するわけではありません。各作業は お使いの Linux 環境に合わせた形で自己責任のもと行ってください。 ^[2]Armadillo-400 シリーズの開発環境としては、ATDE v3.0 以降を推奨しています。

sudo は引数に与えられたコマンドを、別のユーザーとして実行するコマ ンドです。上記コマンドでは、root (スーパー)ユーザーとして、dpkg コ マンドを実行します。

sudo を実行すると、パスワードを要求されることがあります。このとき 入力するパスワードは、そのユーザーのパスワードであり、root パスワー ドではありません。

ご使用の開発環境に既に同一ターゲット向けのアーキテクチャ用クロス開 発環境がインストールされている場合、新しいクロス開発環境をインス トールする前に必ず既存環境をアンインストールするようにしてください。

4.2. Atmark-Dist のビルドに必要なパッケージのインストール

Armadillo 標準のディストリビューションである、Atmark-Dist をビルドするためには、「表 4.1. Atmark-Dist のビルドに必要なパッケージー覧」に示すパッケージが作業用 PC にインストールされて いる必要があります。

パッケージ名	バージョン
genext2fs	1.4.1-2.1 以降
file	4.26-1 以降
sed	4.1.5-6 以降
perl	5.10.0-19lenny2 以降
bison	1:2.3.dfsg-5 以降
flex	2.5.35-6 以降
libncurses5-dev	5.7+20081213-1 以降

表 4.1 Atmark-Dist のビルドに必要なパッケージ一覧

現在インストールされているバージョンを表示するには、「図 4.2. インストール情報表示コマンド」 のようにパッケージ名を指定して実行してください。

--list はパッケージ情報を表示する **dpkg** のオプションです。package-name-pattern にはバー ジョンを表示したいパッケージ名のパターンを指定します。

[PC ~] dpkg --list [package-name-pattern]

図 4.2 インストール情報表示コマンド

4.3. クロス開発用ライブラリパッケージのインストール

Atmark-Dist に含まれないアプリケーションやライブラリをビルドする際に、付属 DVD やダウンロードサイトには用意されていないライブラリパッケージが必要になることがあります。ここでは、クロス開発用ライブラリパッケージの作成方法およびそのインストール方法を紹介します。

まず、作成したいクロス開発用パッケージの元となるライブラリパッケージを取得します。取得する パッケージは、アーキテクチャをターゲットに、Debian ディストリビューションのバージョンを開発環 境に合わせる必要があります。Armadillo-400 シリーズでは、アーキテクチャは armel、Debian ディ ストリビューションのバージョンは lenny (2010年3月現在の stable)になります。

例えば、libjpeg62の場合「libjpeg62_[version]_armel.deb」というパッケージになります。

Debian パッケージは、Debian Packages サイト^[3]から検索して取得することができます。

取得したライブラリパッケージをクロス開発用に変換するには、dpkg-cross コマンドを使用します。

```
[PC ~]$ dpkg-cross --build --arch armel libjpeg62_[version]_armel.deb
[PC ~]$ ls
libjpeg62-armel-cross_[version]_all.deb libjpeg62_[version]_armel.deb
```

図 4.3 クロス開発用ライブラリパッケージの作成

作成されたクロス開発用ライブラリパッケージをインストールします。

[PC ~]\$ sudo dpkg -i libjpeg62-armel-cross_[version]_all.deb

図 4.4 クロス開発用ライブラリパッケージのインストール

Debian lenny 以外の Linux 環境で **dpkg-cross** を行った場合、インス トール可能なパッケージを生成できない場合があります。

apt-cross コマンドを使用すると、上記の一連の作業を1つのコマンドで行うことができます。

[PC ~]\$ apt-cross --arch armel --suite lenny --install libjpeg62

図 4.5 apt-cross コマンド

--arch オプションにはアーキテクチャを、--suite オプションには Debian ディストリビューションのバージョンをそれぞれ指定し、--install オプションで取得/変換したパッケージをインストールすることを指定します。最後の引数には、パッケージ名を指定します。

^[3]http://www.debian.org/distrib/packages

5.フラッシュメモリの書き換え方法

本章では、Armadillo のオンボードフラッシュメモリを書き換える手順について説明します。

フラッシュメモリの書き換え方法には、大きくわけて2種類の方法があります。

- 作業用 PC で動作するダウンローダーから、ターゲットとなる Armadillo にイメージを送信して、 フラッシュを書き換える方法
- 2. ターゲットとなる Armadillo 自身で、リモートサーバーからイメージファイルを取得してフラッシュを書き換える方法

まず、「5.3. ダウンローダーを使用してフラッシュメモリを書き換える」で、1. の方法について説明します。次に、「5.4. tftpdl を使用してフラッシュメモリを書き換える」および、「5.5. netflash を使用してフラッシュメモリを書き換える」が 2. の方法について説明します。

5.1. フラッシュメモリの書き込み領域について

フラッシュメモリの書き込み先頭アドレスは、リージョン(領域)名で指定することができます。各 リージョンに指定するイメージファイルは、「表 5.1. リージョン名と対応するイメージファイル 」のよ うになります。

製品	リージョン名	ファイル名
	bootloader	loader-armadillo4x0-[version].bin
Armadillo-440 液晶モデル	kernel	linux-a400-[version].bin.gz
	userland	romfs-a440-[version].img.gz
	bootloader	loader-armadillo4x0-[version].bin
Armadillo-420 ベーシックモデル	kernel	linux-a400-[version].bin.gz
	userland	romfs-a420-[version].img.gz

表 5.1 リージョン名と対応するイメージファイル

Armadillo-420 と Armadillo-440 は、ブートローダー及びカーネルに共通のイメージファイルを使用します。

5.2. ダウンローダーのインストール

作業用 PC にダウンローダーをインストールします。

ダウンローダーには、「表 5.2. ダウンローダー一覧」に示すように複数の種類があります。

表 5.2 ダウンローダー一覧

ダウンローダー	OS タイプ	説明
Hermit-At ダウンローダー	Linux	Linux 用の CUI アプリケーションです。
Shoehorn-At	Linux	Linux 用の CUI アプリケーションです。
Hermit-At Win32	Windows	Windows 用の GUI アプリケーションです。

ATDE (Atmark Techno Development Environment) を利用する場合、 ダウンローダーパッケージはすでにインストールされているので、インス トールする必要はありません。

5.2.1. 作業用 PC が Linux の場合

付属 DVD のダウンローダーディレクトリ (downloader/) 以下の deb パッケージディレクトリ (deb/)よりパッケージファイルを取得し、インストールします。

[PC ~]\$ sudo dpkg --install hermit-at_[version]_i386.deb
[PC ~]\$ sudo dpkg --install shoehorn-at_[version]_i386.deb

図 5.1 ダウンローダーのインストール(Linux)

5.2.2. 作業用 PC が Windows の場合

付属 DVD のダウンローダーディレクトリ (downloader/) 以下の win32 ディレクトリ (win32/) に ある hermit-at-win_[version].zip を任意のフォルダに展開します。

5.3. ダウンローダーを使用してフラッシュメモリを書き換える

ここでは、Hermit-At ダウンローダーおよび Hermit-AT Win32 を使用してフラッシュメモリを書き 換える手順について説明します。

Hermit-At ダウンローダーおよび Hermit-AT Win32 は、Armadillo のブートローダーと協調動作を 行い、作業用 PC から Armadillo のフラッシュメモリを書き換えることができます。

5.3.1. 準備

「表 2.8. ジャンパの設定」を参照しジャンパを適切に設定したあと Armadillo に電源を投入し、保守 モードで起動してください。

Armadillo と接続している作業用 PC のシリアルインターフェースが他のアプリケーションで使用されていないことを確認してください。使用されている場合は、該当アプリケーションを終了するなどしてシリアルインターフェースを開放してください。

5.3.2. 作業用 PC が Linux の場合

作業用 PC が Linux の場合、hermit-at コマンドを使用し、「図 5.2. ダウンロードコマンド」のよう にコマンドを実行します。

download は **hermit-at** コマンドのサブコマンドの1つです。--input-file で指定されたファイ ルをターゲットボードに書き込む時に使用します。--region は書き込み対象の領域を指定するオプショ ンです。下記の例では、「kernel 領域に linux.bin.gz を書き込む」という指示になります。

[PC ~]\$ hermit download --input-file linux.bin.gz --region kernel

図 5.2 ダウンロードコマンド

シリアルインターフェースが ttySO 以外の場合は、「図 5.3. ダウンロードコマンド(ポート指定)」の ように--port オプションを使用してポートを指定してください^[1]。

[PC ~]\$ hermit download --input-file linux.bin.gz --region kernel --port ttyS1

図 5.3 ダウンロードコマンド(ポート指定)

bootloader リージョンは、誤って書き換えることがないように簡易プロテクトされています。書き換える場合は、「図 5.4. ダウンロードコマンド(アンプロテクト)」のように--force-locked オプションを使用して、プロテクトを解除してください^[1]。

[PC ~]\$ hermit download --input-file loader-armadillo4x0-[version].bin
 --region bootloader --force-locked

図 5.4 ダウンロードコマンド(アンプロテクト)

bootloader リージョンに誤ったイメージを書き込んでしまった場合、オンボードフラッシュメモリからの起動ができなくなります。この場合は「5.6. ブートローダーを出荷状態に戻す」を参照してブートローダーを復旧してください。

[1]書面の都合上折り返して表記しています。実際にはコマンドは 1 行で入力します。

5.3.3. 作業用 PC が Windows の場合

作業用 PC が Windows の場合、hermit.exe を実行すると、「図 5.5. Hermit-At Win32: Download ウィンドウ」が表示されます。

Hermit-At	WIN32		
Serial Port	Download Me	mmap Shoehorn Version D:¥Products¥Armadillo-400¥linux-a400-1.00 bin.gz	
· _	Region	kernel	
		ForceLocked	実行
			<
Atmark Techno, Inc.			~

図 5.5 Hermit-At Win32: Download ウィンドウ

Armadillo と接続されているシリアルインターフェースを「Serial Port」に指定してください。ドロップダウンリストに表示されない場合は、直接ポート名を入力してください。

Image には書き込むファイルを、Region には書き込み対象のリージョンを指定してください。all や bootloader リージョンを指定する場合は、Force Locked をチェックする必要があります。

すべて設定してから実行ボタンをクリックすると、書き込みが開始されます。書き込み中は、「図 5.6. Hermit-At Win32:download ダイアログ」が表示され、ダウンロードの設定と進捗状況を確認するこ とができます。

download		
File Size Region Mode Com	: D:¥Products¥Armadillo-400¥linux-a400-1.00 : 1662111 : kernel : default : COM1	

図 5.6 Hermit-At Win32: download ダイアログ

ダウンロードが完了すると、ダイアログはクローズされます。

5.4. tftpdl を使用してフラッシュメモリを書き換える

ここからは、Armadillo 自身でリモートサーバーからイメージファイルを取得してフラッシュメモリ を書き換える方法について説明します。

Hermit-At ブートローダーの tftpdl 機能を使用することで、ダウンローダーを使用して書き込むより も高速にフラッシュメモリを書き換えることができます。

tftpdl 機能は、所属するネットワークにある TFTP サーバーが公開しているファイルをダウンロード して、自分自身のフラッシュメモリを書き換えることができる機能です。

ATDE v3.0 以降では、標準で TFTP サーバー (atftpd) が動作していま す。/var/lib/tftpboot/ディレクトリにファイルを置くことで、TFTP によるアクセスが可能になります。

tftpdl 機能を使用するには、ターゲットとなる Armadillo のジャンパを設定し、保守モードで起動し てください。

作業用 PC のシリアル通信ソフトウェアを使用して、コマンドを入力します。「図 5.7. tftpdl コマン ド例」は、Armadillo の IP アドレスを 192.168.10.10 に設定し、IP アドレスが 192.168.10.1 の TFTP サーバー上にある、linux.bin.gz を kernel リージョンにを書き込む例です。

hermit> tftpdl 192.168.10.10 192.168.10.1 --kernel=linux.bin.gz

図 5.7 tftpdl コマンド例

書き込み対象には、ブートローダー、カーネル、ユーザーランドそれぞれのリージョンを指定することができます。 書き込むリージョンとオプションの対応を、「表 5.3. リージョンとオプションの対応」 に示します。

表 5.3 リージョンとオプションの対応

リージョン	オプション
ブートローダー	bootloader
カーネル	kernel
ユーザーランド	userland

5.5. netflash を使用してフラッシュメモリを書き換える

Linux が動作している状態では、Linux アプリケーションの **netflash** を使用することでフラッシュメ モリを書き換えることができます。

netflash は、接続されているネットワーク内にある HTTP サーバーや FTP サーバーが公開している ファイルをダウンロードして、自分自身のフラッシュメモリを書き換えることができるコマンドです。

ATDE v3.0 以降では、標準で HTTP サーバー (lighttpd) が動作していま す。/var/www/ ディレクトリにファイルを置くことで、HTTP によるア クセスが可能になります。

netflash を使用するには、Armadillo にログインし「図 5.8. netflash コマンド例」のようにコマンドを実行します。

[armadillo ~]# netflash -k -n -u -r /dev/flash/kernel [URL]

図 5.8 netflash コマンド例

オプションの"-r [デバイスファイル名]"で書き込み対象のリージョンを指定しています。「表 5.4. リー ジョンとデバイスファイルの対応」を参照してください。その他のオプションについては、netflash -h で詳細を確認する事ができます。

表	5.4	リー	・ジョ	ン	とデ	バイ	スフ	アイ	゛ルの	対応
---	-----	----	-----	---	----	----	----	----	-----	----

リージョン	デバイスファイル
カーネル	/dev/flash/kernel
ユーザーランド	/dev/flash/userland

bootloader リージョンは標準状態ではリードオンリー属性となっている ため、**netflash** で書き換えることはできません。

5.6. ブートローダーを出荷状態に戻す

何らかの理由でブートローダー領域の内容が破壊されブートローダーが起動しなくなった場合、UART ブートモードを使用することでブートローダーを出荷状態に戻すことができます。

5.6.1. 準備

Armadillo のジャンパを、「表 2.8. ジャンパの設定」を参照し、UART ブートモードに設定してくだ さい。この時点では Armadillo は起動させないでください。

Armadillo と接続している作業用 PC のシリアルインターフェースが他のアプリケーションで使用されていないことを確認します。使用されている場合は、該当アプリケーションを終了するなどしてシリアルインターフェースを開放してください。

5.6.2. 作業用 PC が Linux の場合

「図 5.9. shoehorn コマンド例」のようにコマンド^[2]を実行してから、Armadillo に電源を投入し、 起動させてください。

^[2]書面の都合上折り返して表記しています。実際にはコマンドは 1 行で入力します。

```
[PC ~]$ shoehorn --boot --target armadillo4x0
--initrd /dev/null
--kernel /usr/lib/hermit/loader-armadillo4x0-boot-[version].bin
--loader /usr/lib/shoehorn/shoehorn-armadillo4x0.bin
--initfile /usr/lib/shoehorn/shoehorn-armadillo4x0.init
--postfile /usr/lib/shoehorn/shoehorn-armadillo4x0.post
```

図 5.9 shoehorn コマンド例

実行すると、「図 5.10. shoehorn コマンドログ」のようにログが表示されます。

```
/usr/lib/shoehorn/shoehorn-armadillo4x0.bin: 1272 bytes (2048 bytes buffer)
/usr/lib/hermit/loader-armadillo4x0-boot-v2.0.0.bin: 45896 bytes (45896 bytes
buffer)
/dev/null: 0 bytes (0 bytes buffer)
Waiting for target - press Wakeup now.
Initializing target...
Writing SRAM loader...
Pinging loader
Initialising hardware:
- flushing cache/TLB
- Switching to 115200 baud
- Initializing for Mobile-DDR
Pinging loader
Detecting DRAM
- 32 bits wide
- start: 0x80000000 size: 0x04000000 last: 0x83fffff
Total DRAM: 65536kB
Loading /usr/lib/hermit/loader-armadillo4x0-boot-v2.0.0.bin:
- start: 0x83000000 size: 0x0000b348 last: 0x8300b347
initrd_start is c0400000
Moving initrd_start to c0400000
Loading /dev/null:
- start: 0xc0400000 size: 0x00000000
Writing parameter area
- nr_pages (all banks): 4096
- rootdev: (RAMDISK_MAJOR, 0)
- pages in bank[0]: 2048
- pages in bank[1]: 2048
- initrd_start: 0xc0400000
- initrd_size: 0x0
- ramdisk_size: 0x0
- start: 0x80020000 size: 0x00000900 last: 0x800208ff
Pinging loader
Starting kernel at 0x83000000
```

図 5.10 shoehorn コマンドログ

shoehorn コマンドが成功すると、ターゲットの Armadillo 上で Hermit At ブートローダーの UART ブートモード版 (loader-armadillo4x0-boot-*[version]*.bin) が動作している状態になります。この状 態で、「5.3. ダウンローダーを使用してフラッシュメモリを書き換える」を参照してブートローダーの書 き込みを行ってください。

5.6.3. 作業用 PC が Windows の場合

hermit.exe を実行し Shoehorn ボタンをクリックすると、「図 5.11. Hermit-At Win32: Shoehorn ウィンドウ」が表示されます。

- Hermit-At	WIN32	
Serial Port	Download Memmap Shoehorn Version Target armadillo4x0	
Atmark Techno, Inc.		

図 5.11 Hermit-At Win32: Shoehorn ウィンドウ

Target に armadillo4x0 を選択して実行ボタンをクリックします。

shoehorn		
libs/sho libs/load Waiting	ehorn−armadillo4x0bin: 1044 bytes (2048 er−armadillo4x0-bootbin: 45896 bytes (4! or target – press Wakeup now.	
<		

図 5.12 Hermit-At Win32: shoehorn ダイアログ

ダイアログが表示されます。Armadillo に電源を投入して起動してください。ダウンロードするための準備が完了すると自動的にダイアログはクローズされます。

この状態で、「5.3. ダウンローダーを使用してフラッシュメモリを書き換える」を参照してブートローダーの書き込みを行ってください。

6.ビルド

この章では、ソースコードから出荷イメージと同じイメージを作成する手順と、それをカスタマイズ する方法について説明します。

開発環境を構築してない場合は、「4. 開発環境の準備」を参照して作業用 PC に開発環境を構築してください。

より詳細な開発手順については「Atmark-Dist 開発者ガイド」を参照してください。

以下の例では、ホームディレクトリ(~/)以下のディレクトリで作業を行います。

開発作業では、基本ライブラリ・アプリケーションやシステム設定ファイ ルの作成・配置を行います。各ファイルは作業ディレクトリ配下で作成・ 配置作業を行いますが、作業ミスにより誤って作業用 PC 自体の OS を破 壊しないために、すべての作業は root ユーザーではなく**一般ユーザー**で 行ってください。

6.1. カーネルイメージとユーザーランドイメージのビルド

ここでは、ソースコードベースのディストリビューションである Atmark-Dist と、Linux カーネルの ソースコードから、ユーザーランドとカーネルのイメージを作成する手順について説明します。

6.1.1. ソースコードの準備

まず最初に、ソースコードを取得します。付属 DVD の Atmark-Dist ソースアーカイブディレクトリ (source/dist) にある atmark-dist-[version].tar.gz と カーネルソースアーカイブディレクトリ (source/kernel) にある linux-[version].tar.gz を作業ディレクトリに展開します。

展開後、Atmark-Dist にカーネルソースを登録します。「図 6.1. ソースコード準備」のように作業してください。

```
[PC ~]$ tar zxvf atmark-dist-[version].tar.gz
[PC ~]$ tar zxvf linux-[version].tar.gz
[PC ~]$ ls
atmark-dist-[version].tar.gz atmark-dist-[version]
linux-[version].tar.gz linux-[version]
[PC ~]$ ln -s atmark-dist-[version] atmark-dist
[PC ~]$ cd atmark-dist
[PC ~/atmark-dist]$ ln -s ../linux-[version] linux-2.6.x
```

図 6.1 ソースコード準備

6.1.2. コンフィギュレーション

ターゲットとなる Armadillo 用に Atmark-Dist をコンフィギュレーションします。Linux カーネル は Atmark-Dist の管理下にあるため、Atmark-Dist を適切に設定すれば、カーネルのコンフィギュレー ションも適切に行われるようになっています。

以下の例のようにコマンドを入力し、コンフィギュレーションを開始します^[1]。

[PC ~/atmark-dist]\$ make config

最初に、使用するボードのベンダー名を尋ねられます。「AtmarkTechno」と入力してください。

```
[PC ~/atmark-dist]$ make config
config/mkconfig > config.in
#
# No defaults found
#
*
* Vendor/Product Selection
*
*
* Select the Vendor you wish to target
*
Vendor (3com, ADI, Akizuki, Apple, Arcturus, Arnewsh, AtmarkTechno, Atmel, Avnet,
Cirrus, Cogent, Conexant, Cwlinux, CyberGuard, Cytek, Exys, Feith, Future, GDB,
Hitachi, Imt, Insight, Intel, KendinMicrel, LEOX, Mecel, Midas, Motorola, NEC,
NetSilicon, Netburner, Nintendo, OPENcores, Promise, SNEHA, SSV, SWARM, Samsung,
SecureEdge, Signal, SnapGear, Soekris, Sony, StrawberryLinux, TI, TeleIP,
Triscend, Via, Weiss, Xilinx, senTec) [SnapGear] (NEW) AtmarkTechno
```

次にプロダクト名を尋ねられます。「表 6.1. プロダクト名一覧」から、使用する製品に対応するプロ ダクト名を入力してください。

表 6.1 プロダクト名一覧

製品	プロダクト名	備考
Armadillo-440 液晶モデル	Armadillo-440	出荷時イメージ
Armadillo-420 ベーシックモデル	Armadillo-420	出荷時イメージ

以下は、Armadillo-440の例です。

```
*
*
* Select the Product you wish to target
*
AtmarkTechno Products (Armadillo-210.Base, Armadillo-210.Recover,
Armadillo-220.Base, Armadillo-220.Recover, Armadillo-230.Base,
Armadillo-230.Recover, Armadillo-240.Base, Armadillo-240.Recover, Armadillo-300,
Armadillo-440, Armadillo-500, Armadillo-500-FX.base, Armadillo-500-FX.dev,
Armadillo-9, Armadillo-9.PCMCIA, SUZAKU-V.SZ310, SUZAKU-V.SZ310-SID, SUZAKU-
V.SZ310-SIL, SUZAKU-V.SZ310-SIL-GPIO, SUZAKU-V.SZ410, SUZAKU-V.SZ410-SID, SUZAKU-
```

^[1]ここでは、CUI でのコンフィギュレーション方法を説明しています。Atmark Dist ではメニュー形式でのコンフィギュレーショ ンも可能です。詳しくは「Atmark-Dist 開発者ガイド」をご参照ください。

V.SZ410-SIL, SUZAKU-V.SZ410-SIL-GPIO, SUZAKU-V.SZ410-SIV) [Armadillo-210.Base] (NEW) Armadillo-440

ビルドする開発環境を尋ねられます。「default」と入力してください。Armadillo-400 シリーズでは、 「default」と入力すると、armel (EABI)の開発環境が選択されます。

* Kernel/Library/Defaults Selection
*
*
* Kernel is linux-2.6.x
*
Cross-dev (default, arm-vfp, arm, armel, armnommu, common, h8300, host, i386,
i960, m68knommu, microblaze, mips, powerpc, sh) [default] (NEW) default

ビルドする libc を指定します。Armadillo-400 シリーズでは「None」を選択してください。「None」 を選択することで、開発環境にインストールされているビルド済みの libc (glibc) を使用します。

Libc Version (None, glibc, uC-libc, uClibc) [uClibc] (NEW) None

既定の設定にするかどうか質問されます。「y」(Yes)を選択してください。

Default all settings (lose changes) (CONFIG_DEFAULTS_OVERRIDE) [N/y/?] (NEW) \mathbf{y}

最後の3つの質問は「n」(No)と答えてください。

Customize Kernel Settings (CONFIG_DEFAULTS_KERNEL) [N/y/?] n Customize Vendor/User Settings (CONFIG_DEFAULTS_VENDOR) [N/y/?] n Update Default Vendor Settings (CONFIG_DEFAULTS_VENDOR_UPDATE) [N/y/?] n

設定の入力が完了するとビルドシステムに反映されてコンフィギュレーションが行われ、プロンプト に戻ります。

6.1.3. ビルド

ビルドするには、atmark-dist ディレクトリで「図 6.2. Atmark-Dist のビルド」のようにコマンドを 実行します。ビルドが完了すると、atmark-dist/images ディレクトリにイメージファイルが作成さ れます。romfs.img がユーザーランドの、linux.bin がカーネルのイメージです。romfs.img.gz と linux.bin.gz はそれぞれのファイルを圧縮したものです。

[PC ~/atmark-dist]\$ make

```
[PC ~/atmark-dist]$ ls images
linux.bin linux.bin.gz romfs.img romfs.img.gz
```

図 6.2 Atmark-Dist のビルド

作成されたイメージは、「5. フラッシュメモリの書き換え方法」の手順に従って、ターゲットの Armadillo に書き込むことができます。通常は、フラッシュメモリの使用容量を少なくするため、圧縮 イメージを書き込みます。

6.1.4. イメージをカスタマイズする

Atmark-Dist には、様々なアプリケーションやライブラリが含まれており、コンフィギュレーション によってそれらをイメージに含めたり、イメージから削除することができます。また、カーネルのコン フィギュレーションの変更を行うこともできます。

Atmark-Dist のコンフィギュレーションを変更するには、make menuconfig コマンドを使用します。

[PC ~/atmark-dist]\$ make menuconfig

図 6.3 Atmark-Dist のコンフィギュレーション

make menuconfig を使用したコンフィギュレーション方法の詳細については、「Atmark-Dist 開発 者ガイド」を参照してください。

コンフィギュレーションを行ったあとは、「6.1.3. ビルド」の手順と同様に、make コマンドを実行すると、コンフィギュレーション結果を反映したイメージが作成されます。

6.1.5. ユーザーランドイメージにアプリケーションを追加する

ここでは、「6.1. カーネルイメージとユーザーランドイメージのビルド」で作成したユーザーランド に、自作のアプリケーションなど Atmark-Dist には含まれないファイルを追加する方法について説明し ます。

自作アプリケーションは、Out-Of-Tree コンパイル^[2]で作成し、~/sample/hello にあると仮定とします。

Atmark-Dist では、romfs ディレクトリにユーザーランドイメージに含めるファイルが置かれていま す。ここに自作アプリケーションを追加し、**make image** コマンドを実行することで、自作アプリケー ションを含んだユーザーランドイメージを作成することができます。

[PC ~/atmark-dist]\$ cp ~/sample/hello romfs/bin/
[PC ~/atmark-dist]\$ make image

[PC ~/atmark-dist]\$ ls images
linux.bin linux.bin.gz romfs.img romfs.img.gz

図 6.4 ユーザーランドイメージのカスタマイズ

作成されたユーザーランドイメージの /bin ディレクトリには、hello がインストールされています。

6.2. ブートローダーイメージのビルド

ここでは、Hermit-At ブートローダーのイメージをソースコードからビルドする手順について説明します。ソースコードのバージョンは、v2.0.0 以降を使用します。

^[2]Out-Of-Tree コンパイルに関しては「Atmark-Dist 開発者ガイド」を参照してください

6.2.1. ソースコードの準備

付属 DVD の source/bootloader にある hermit-at-[version]-source.tar.gz を作業ディ レクトリに展開します。「図 6.5. Hermit-At ソースアーカイブの展開」のように作業してください。

[PC ~]\$ tar zxvf hermit-at-[version]-source.tar.gz [PC ~]\$ ln -s hermit-at-[version] hermit-at [PC ~]\$ cd hermit-at [PC ~/hermit-at]\$

図 6.5 Hermit-At ソースアーカイブの展開

6.2.2. ビルド

Hermit-At v2.0.0 以降では、製品ごとに標準の設定が defconfig として用意されています。出荷イ メージと同じイメージをビルドするには、「図 6.6. Hermit-At ビルド例」のようにコマンドを実行して ください。

[PC ~/hermit-at]\$ make armadillo4x0_defconfig
[PC ~/hermit-at]\$ make

[PC ~/hermit-at]\$ ls src/target/armadillo4x0/*.bin loader-armadillo4x0-[version].bin

図 6.6 Hermit-At ビルド例

loader-armadillo4x0-[version].bin が作成されたブートローダーイメージです。

Hermit-At v2.0.0 以降では、Atmark-Dist と同様に **make menuconfig** でのコンフィギュレーションに対応しています。コンフィギュレーションを変更することにより、コマンドの追加/削除や、動作の 変更を行うことができます。

7.カーネル/ユーザーランドの配置

Armadillo-400 シリーズでは、標準ではカーネルおよびユーザーランドイメージはフラッシュメモリ に配置されており、ブートローダーによってカーネルのブート前に RAM 上に展開されます。

Armadillo-400 シリーズでは、フラッシュメモリ以外の場所にもカーネルおよびユーザーランドを配置することができます。

本章では、イメージの配置方法と、イメージの配置場所を変えたときに必要となるブートオプション の設定方法について説明します。

7.1. TFTP サーバーに配置する

Hermit-At ブートローダーは、TFTP サーバー上に配置されたカーネルまたはユーザーランドのイメージを取得し RAM 上に展開したあと起動する、tftpboot 機能を有しています。

tftpboot 機能を使用すると、フラッシュメモリにイメージを書くことなく起動できるため、開発の初 期段階などイメージの更新が頻繁に行われる際に、効率よく作業することができます。

7.1.1. ファイルの配置

TFTP サーバーのルートディレクトリに、カーネルイメージとユーザーランドイメージを配置してください。

ATDE v3.0 以降では、標準状態で TFTP サーバー (atftpd) が動作してい ます。/var/lib/tftpboot ディレクトリにファイルを置くことで、 TFTP によるアクセスが可能になります。

7.1.2. ブートオプション

ターゲットとなる Armadillo のジャンパを適切に設定し、保守モードで起動してください。

作業用 PC のシリアル通信ソフトウェアを使用して、コマンド^[1]を入力します。

図 7.1 tftpboot コマンド

カーネルとユーザーランドのイメージは、どちらか一方だけ、もしくは両方指定できます。

[1]書面の都合上折り返して表記しています。実際にはコマンドは1行で入力します。

TFTP サーバーの IP アドレスが 192.168.10.1、Armadillo の IP アドレスが 192.168.10.10 で、 カーネルイメージのファイル名が linux.bin.gz、ユーザーランドのイメージのファイル名が romfs.img.gz の場合、以下のようになります^[2]。

hermit> setbootdevice tftp 192.168.10.10 192.168.10.1 --kernel=linux.bin.gz --userland=romfs.img.gz

図 7.2 tftpboot コマンド例

setbootdevice コマンドでブートデバイスを TFTP サーバーに設定した場合、設定は保存され、起動時に毎回カーネルもしくはユーザーランドイメージを TFTP サーバーから取得するようになります。

7.2. ストレージに配置する

Armadillo-400 シリーズでは、カーネルイメージは microSD に、ユーザーランドのルートファイル システムは microSD または USB メモリにも配置することができます。

ここでは、microSD にカーネルとユーザーランド両方のイメージを配置する手順を説明します。

パーティションは以下のようにします。

表 7.1 microSD システムパーティション例

パーティション	ファイルシステム	サイズ	説明
/dev/mmcblk0p1	ext2	32MB	起動パーティション、カーネルイメージを 配置します
/dev/mmcblk0p2	ext3	残り	ルートファイルシステムを配置します

7.2.1. パーティション分割

最初に、microSD を2つのパーティションに分けます。

microSD をスロットに挿入し^[3]、「図 7.3. パーティション分割手順」のようにしてパーティションを 構成してください。

[2]書面の都合上折り返して表記しています。実際にはコマンドは 1 行で入力します。

^[3]Armadillo-400 シリーズの microSD スロットは、ロック式になっています。microSD カードの着脱方法に関しては 「Armadillo-400 シリーズ ハードウェアマニュアル」をご参照ください。

```
[armadillo ~]# fdisk /dev/mmcblk0
The number of cylinders for this disk is set to 31104.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
  (e.g., DOS FDISK, OS/2 FDISK)
Command (m for help): d
Selected partition 1
Command (m for help): n
Command action
  e extended
  p primary partition (1-4) p
Partition number (1-4): 1
First cylinder (1-31104, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-31104, default 31104): +32M
Command (m for help): n
Command action
  е
     extended
  p primary partition (1-4) p
Partition number (1-4): 2
First cylinder (979-31104, default 979):
Using default value 979
Last cylinder or +size or +sizeM or +sizeK (979-31104, default 31104):
Using default value 31104
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
mmcblk0: p1 p2
mmcblk0: p1 p2
Syncing disks.
[armadillo ~]#
```

図 7.3 パーティション分割手順

使用する microSD カードによって仕様が異なるため、表示されるシリン ダ数は手順通りとはならない場合があります。

7.2.2. ファイルシステムの作成

次に、「図 7.4. ファイルシステム作成手順」のようにして、各パーティションにファイルシステムを 作成します。起動パーティションは EXT2 ファイルシステムに、ルートファイルシステムパーティショ ンは EXT3 ファイルシステムにします。

起動パーティション(カーネルイメージを配置するパーティション)に EXT2 ファイルシステムを作成する場合は、mke2fs のオプションとし て、必ず「-O none」を指定する必要があります。

```
[armadillo ~]# mke2fs -O none /dev/mmcblk0p1
mke2fs 1.25 (20-Sep-2001)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
7840 inodes, 31288 blocks
1564 blocks (4%) reserved for the super user
First data block=1
4 block groups
8192 blocks per group, 8192 fragments per group
1960 inodes per group
Superblock backups stored on blocks:
        8193, 16385, 24577
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 39 mounts or
180.00 days, whichever comes first. Use tune2fs -c or -i to override.
[armadillo ~]# mke2fs -j /dev/mmcblk0p2
mke2fs 1.25 (20-Sep-2001)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
120576 inodes, 241008 blocks
12050 blocks (4%) reserved for the super user
First data block=0
8 block groups
32768 blocks per group, 32768 fragments per group
15072 inodes per group
Superblock backups stored on blocks:
        32768, 98304, 163840, 229376
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 27 mounts or
180.00 days, whichever comes first. Use tune2fs -c or -i to override.
```

図 7.4 ファイルシステム作成手順

7.2.3. カーネルイメージの配置

microSD から起動する場合は、起動パーティションの /boot ディレクトリにカーネルイメージを配置する必要があります。対応しているカーネルイメージは、非圧縮カーネルイメージ(Image, linux.bin)または、圧縮イメージ(Image.gz, linux.bin.gz)のどちらかになります。 ここで説明する例では、カーネルイメージの取得に wget コマンドを使用します。wget コマンドで指定する URL は製品によって異なりますので、以下の表を参照し適宜読み替えてください。

表 7.2 カーネルイメージのダウンロード先 URL

製品	URL
Armadillo-420	http://download.atmark-techno.com/armadillo-420/image/linux-a400- [version].bin.gz
Armadillo-440	http://download.atmark-techno.com/armadillo-440/image/linux-a400- [version].bin.gz

以下に Armadillo-440 での配置例を示します。

```
[armadillo ~]# mount -t ext2 /dev/mmcblk0p1 /mnt/
[armadillo ~]# mkdir /mnt/boot
[armadillo ~]# cd /mnt/boot
[armadillo /mnt/boot]# wget http://download.atmark-techno.com/armadillo-440/image/
linux-a400-[version].bin.gz
[armadillo /mnt/boot]# mv linux-a440-[version].bin.gz /mnt/boot/linux.bin.gz
[armadillo /mnt/boot]# cd
[armadillo ~]# umount /mnt
```

図 7.5 カーネルイメージの配置

7.2.4. ルートファイルシステムの構築

ここでは、microSD にルートファイルシステムを構築する手順について説明します。

ルートファイルシステムは、Debian/GNU Linux もしくは Atmark-Dist で作成したルートファイル システムを使用できます。

7.2.4.1. Debian GNU/Linux を構築する

Debian GNU/Linux を構築する場合、付属 DVD の debian ディレクトリ以下のアーカイブを使用す るか、弊社ダウンロードサイトからアーカイブを取得します。これは、純粋な Debian GNU/Linux でイ ンストールされるファイルを分割してアーカイブ化したものとなります。これらをファイルシステム上 に展開することでルートファイルシステムを構築することができます。

ルートファイルシステムに Debian GNU/Linux を構築する場合は、パー ティションの空き容量が約 1GB 以上必要です。

ここで説明する例では、debian アーカイブの取得に wget コマンドを使用します。wget コマンドで 指定する URL は製品によって異なりますので、以下の表を参照し適宜読み替えてください。

製品	URL
Armadillo-420/440 共通	http://download.atmark-techno.com/armadillo-4x0/debian/ debian-lenny-armel-#.tgz ^[1]
	http://download.atmark-techno.com/armadillo-4x0/debian/ debian-lenny-armel-a4x0.tgz

表 7.3 Debian アーカイブのダウンロード先 URL

[1]注:#の部分は1~5まで

```
[armadillo ~]# mount /dev/mmcblk0p2 /mnt/
[armadillo ~]# mkdir tmp
[armadillo ~]# mount -t ramfs ramfs tmp
[armadillo ~]# cd tmp
[armadillo ~/tmp]# for N in 1 2 3 4 5 a4x0; do
> wget http://download.atmark-techno.com/armadillo-4x0/debian/debian-lenny-armel-$
{N}.tgz;
> gzip -cd debian-lenny-armel-${N}.tgz | (cd /mnt; tar xf -);
> sync;
> rm -f debian-lenny-armel-${N}.tgz;
> done
[armadillo ~/tmp]# cd
[armadillo ~]# umount tmp
[armadillo ~]# mdir tmp
[armadillo ~]# mdir tmp
[armadillo ~]# umount /mnt
```

図 7.6 Debian アーカイブによるルートファイルシステムの構築例

7.2.4.2. Atmark-Dist イメージから構築する

Atmark-Dist で作成されるルートファイルシステムと同じルートファイルシステムを microSD 上に 構築する方法を説明します。Debian を構築する場合に比べ、容量の少ない microSD ヘシステムを構築 することができます。

ここで説明する例では、Atmark-Dist で作成されるルートファイルシステムの initrd イメージの取得 に wget コマンドを使用します。wget コマンドで指定する URL は製品によって異なりますので、以下 の表を参照し適宜読み替えてください。

製品	URL
Armadillo-420	http://download.atmark-techno.com/armadillo-420/image/romfs-a420- [version].img.gz
Armadillo-440	http://download.atmark-techno.com/armadillo-440/image/romfs-a440- [version].img.gz

表	7.4	Atmar	k-Dist	イ	メー	ジの)ダウ	ッン	-0-	ド先	URI
2	/ .T	/	K DIGL		<u> </u>	~ ~		-		1 20	

[armadillo ~]# mount /dev/mmcblk0p2 /mnt/ [armadillo ~]# mkdir tmp [armadillo ~]# mkdir romfs [armadillo ~]# mount -t ramfs ramfs tmp [armadillo ~]# wget http://download.atmark-techno.com/armadillo-440/image/romfsa440-[version].img.gz -P tmp [armadillo ~]# gzip -d tmp/romfs-a440-[version].img.gz [armadillo ~]# mount -o loop tmp/romfs-a440-[version].img romfs/ [armadillo ~]# mount -o loop tmp/romfs-a440-[version].img romfs/ [armadillo ~]# (cd romfs/; tar cf - *) | (cd /mnt; tar xf -) [armadillo ~]# sync [armadillo ~]# umount romfs [armadillo ~]# mdir romfs [armadillo ~]# mdir tmp [armadillo ~]# mdir tmp [armadillo ~]# umount /mnt

図 7.7 Atmark-Dist イメージによるルートファイルシステムの構築例

7.2.5. カーネルパラメータの設定

microSD に配置したカーネルから起動するためには、Hermit-At を使用してカーネルパラメータを設 定する必要があります。

ジャンパにより起動モードを保守モードに設定し、再起動してください。

microSD のパーティション 1 に配置したカーネルイメージで起動するためには、「図 7.8. 起動デバイスの指定」を実行してください。

hermit> setbootdevice mmcblk0p1

図 7.8 起動デバイスの指定

ルートファイルシステムを microSD のパーティション 2 にする場合は、「図 7.9. ルートファイルシ ステム指定例」を実行してください。

hermit> setenv console=ttymxc1 root=/dev/mmcblk0p2 noinitrd rootwait

図 7.9 ルートファイルシステム指定例

7.3. 設定を元に戻す

ブートデバイスを初期状態のフラッシュメモリに戻す場合には、「図 7.10. 起動デバイスにフラッシュ メモリを指定する」のコマンドを入力してください。

hermit> **setbootdevice flash**

図 7.10 起動デバイスにフラッシュメモリを指定する

また、setenv で設定した起動オプションを初期状態の設定に戻すには、clearenv コマンドを実行し てください。 hermit> **clearenv**

図 7.11 clearenv で起動オプションを初期状態に戻す

8.Linux カーネルデバイスドライバー仕様

本章では、Armadillo-400 シリーズに固有な Linux カーネルのデバイスドライバーの仕様について説 明します。

8.1. UART

Armadillo-400 シリーズの UART ドライバーは以下の機能を有します。

- ・7/8 bit 送受信
- ・1/2 ストップビット
- ・None/Odd/Even パリティ
- ・XON/XOFF ソフトウェアフローコントロール
- ・CTS/RTS ハードウェアフローコントロール (シリアルインターフェース 1のみ)
- ・モデム信号コントロール (シリアルインターフェース1のみ)
- ・スタンダード Linux シリアル API
- ・最大ボーレート 230.4Kbps(シリアルインターフェース 1) / 4Mbps^[1] (シリアルインターフェー ス 2, 3)

各シリアルインターフェースとデバイスファイルの対応を、「表 8.1. シリアルインターフェースとデバイスファイルの対応」に示します。

表 8.1 シリアルインターフェースとデバイスファイルの対応

シリアルインターフェース	デバイスファイル
シリアルインターフェース 1	/dev/ttymxc1
シリアルインターフェース2	/dev/ttymxc2
シリアルインターフェース3	/dev/ttymxc4

8.2. Ethernet

Armadillo-400 シリーズの Ethernet ドライバーは以下の機能を有します。

- ・AutoNegotiation サポート
- ・CarrierDetect サポート
- ・Ethtool サポート
 - \cdot link status
 - · 10/100Mbps Speed

^[1]DMA 転送を有効にした場合。標準では DMA 転送は無効になっています。

- Full/Half Duplex
- · AutoNegotiation enable/disable

8.3. SD/MMC/SDIO ホスト

Armadillo-400 シリーズの SD/MMC/SDIO ホストドライバーは以下の機能を有します。

- ・4ビットモード
- ・カードディテクト

microSD カードスロットにカードが挿入されると、/dev/mmcblk0 として認識されます。

8.4. USB 2.0 ホスト

Armadillo-400 シリーズの USB 2.0 ホストドライバーは以下の機能を有します。

- ・EHCI 準拠
- ・OTG 非サポート
- ・USB High Speed ホスト×1
- ・USB Full Speed ホスト×1

USB デバイスが検出されると、/dev/sd* にマップされます。

8.5. フレームバッファ

Armadillo-440 のビデオ出力機能は、フレームバッファデバイスとして実装されています。

フレームバッファデバイスドライバーは以下の機能を有します。

- ・ダブルバッファサポート
- ・最大解像度 SVGA

Armadillo-440液晶モデルの標準では、以下の設定になっています。

- ・解像度 480 × 272 ピクセル
- ・RGB 565 カラー

フレームバッファとデバイスファイルの対応を、「表 8.2. フレームバッファとデバイスファイルの対応」に示します。

フレームバッファ	デバイスファイル
バックグラウンドプレーン	/dev/fb0
グラフィックウィンドウ	/dev/fb1

表8.2 フレームバッファとデバイスファイルの対応

8.6. LED バックライト

Armadillo-440 の LED バックライト機能は、バックライトクラスとして実装されています。

/sys/class/backlight/pwm-backlight ディレクトリ以下のファイルによって、バックライトの 制御を行うことができます。

輝度の調整は、brightness ファイルによって行うことができます。 brightness ファイルに O(消灯)~255(最高輝度)までの数値を書き込むことにより、輝度を変更することができます。

また、brightness ファイルを読むことにより現在の輝度を知ることができます。

バックライトの点灯/消灯は、bl_power ファイルによって行うことができます。bl_power に 0 を 書き込むと消灯になり、1 を書き込むと点灯になります。

8.7. タッチスクリーン

Armadillo-440 のタッチスクリーン機能は、インプットデバイスとして実装されており、ユーザーランドとのインターフェースとしてイベントインターフェースを提供しています。

「表 8.3. タッチスクリーンイベント」に示すイベントが発生します。

Туре	Code	Value
EV_KEY(1)	BTN_TOUCH(330)	0 or 1
EV_ABS(3)	ABS_X(0)	$100 \sim 4000$
EV_ABS(3)	ABS_Y(1)	$100 \sim 4000$
EV ABS(3)	ABS PRESSURE(24)	0 or 1

表 8.3 タッチスクリーンイベント

Armadillo-440 液晶モデルの標準状態では、タッチスクリーンのイベントデバイスは /dev/input/ event1 にマップされます。

イベントデバイスの番号は、検出された順番に割り振られます。そのため、USB キーボードなど他のインプットデバイスが起動時に検出されると、タッチスクリーンのイベントデバイス番号は変わる可能性があります。

8.8. オーディオ

Armadillo-440 のオーディオ機能は、ALSA デバイスとして実装されています。 ALSA デバイスドラ イバーは以下の機能を有します。

- Playback(2ch) / Capture(1ch)
- ・サンプリング周波数 48k, 32k, 24k, 16k, 12k, 8k Hz
- ・フォーマット Signed 16/20/24 bit, Little-endian

オーディオデバイスの制御は、ALSA ライブラリ (libasound2) を通じて行うことができます。

Armadillo-440 のオーディオドライバーでは、録音と再生を同時に行うことはできません。

8.9. GPIO

Armadillo-400 シリーズの GPIO は、generic GPIO として実装されています。

ユーザーランドから GPIO を操作するためのインターフェースとしては、GPIO sysfs と Armadillo-200 シリーズ互換 GPIO ドライバーの 2 つがあります。標準状態では GPIO sysfs ドライバーが有効になっ ています。

8.9.1. GPIO sysfs

GPIO sysfs では、/sys/class/gpio/(GPIO_NAME) ディレクトリ以下のファイルで入出力方向の 設定、出力レベルの設定、入出力レベルの取得を行うことができます。

GPIO_NAME ディレクトリと GPIO ピン の対応を「表 8.4. GPIO_NAME と GPIO ピンの対応」に示します。

GPIO NAME	GPIO ピン	初期入出力方向	初期出力レベル
CON9 1	CON91ピン	入力	-
 CON9_2	CON9 2 ピン	入力	-
CON9_11	CON9 11 ピン	入力	-
CON9_12	CON9 12 ピン	入力	-
CON9_13	CON9 13 ピン	入力	-
CON9_14	CON9 14 ピン	入力	-
CON9_15	CON9 15 ピン	入力	-
CON9_16	CON9 16 ピン	入力	-
CON9_17	CON9 17 ピン	入力	-
CON9_18	CON9 18 ピン	入力	-
CON9_21	CON9 21 ピン	入力	-
CON9_22	CON9 22 ピン	入力	-
CON9_23	CON9 23 ピン	入力	-
CON9_24	CON9 24 ピン	入力	-
CON9_25	CON9 25 ピン	入力	-
CON9_26	CON9 26 ピン	入力	-
CON9_27	CON9 27 ピン	出力	LOW
CON9_28	CON9 28 ピン	出力	LOW

表 8.4 GPIO_NAME と GPIO ピンの対応

/sys/class/gpio/(GPIO_NAME)/direction ファイルで入出力方向の設定を行うことができます。「表 8.5. GPIO 入出力方向の設定」に示す設定を direction ファイルに書き込むことにより、入出 力方向を設定します。また、direction ファイルを読み込むことで現在の設定を知ることができます。

表 8.5 GPIO 入出力方向の設定

設定	説明
high	入出力方向を出力に、出力レベルを HIGH レベルに設定します。出力レベルの取得/設定を 行うことができます
	1)))))))))))))))))))
low	入出力方向を出力に、出力レベルを LOW レベルに設定します。出力レベルの取得/設定を
	行うことができます。
out	low を設定した場合と同じです。
in	入出力方向を入力に設定します。入力レベルの取得を行うことができます。

/sys/class/gpio/(GPIO_NAME)/value ファイルで出力レベルの設定、入出力レベルの取得を行うことができます。0 が LOW レベルを、1 が HIGH レベルを意味します。

8.9.2. Armadillo-200 シリーズ互換 GPIO ドライバー

Armadillo-200 シリーズ互換 GPIO ドライバーでは、対応するデバイスファイルに対して ioctl を発行することにより、GPIO の操作および状態の取得を行うことができます。

Armadillo-200 シリーズ互換 GPIO ドライバーは標準状態では無効になっています。有効にするには Linux カーネルコンフィギュレーションで、CONFIG_GPIO_SYSFS を無効に、CONFIG_ARMADILLO2X0_GPIO を有効にして、カーネルをビルドする必要があります。

Armadillo-200 シリーズ互換 GPIO ドライバーでの GPIO 名と GPIO ピンの対応を「表 8.6. Armadillo-200 シリーズ互換 GPIO ドライバー GPIO 一覧」に示します。

GPIO 名	GPIO ピン	初期入出力方向	初期出力レベル
GPIO0	CON9 21 ピン	入力	-
GPIO1	CON9 22 ピン	入力	-
GPIO2	CON9 23 ピン	入力	-
GPIO3	CON9 24 ピン	入力	-
GPIO4	CON9 25 ピン	入力	-
GPIO5	CON9 26 ピン	入力	-
GPIO6	CON9 27 ピン	出力	LOW
GPIO7	CON9 28 ピン	出力	LOW
GPIO8	CON9 11 ピン	入力	-
GPIO9	CON9 12 ピン	入力	-
GPIO10	CON9 13 ピン	入力	-
GPIO11	CON9 14 ピン	入力	-
GPIO12	CON9 15 ピン	入力	-
GPIO13	CON9 16 ピン	入力	-
GPI014	CON9 17 ピン	入力	-
GPIO15	CON9 18 ピン	入力	-

表 8.6 Armadillo-200 シリーズ互換 GPIO ドライバー GPIO 一覧

Armadillo-200 シリーズ互換 GPIO ドライバーでの GPIO 名と対応する GPIO ピンの位置は、Armadillo-200 シリーズと同じになっています。そ のため、Armadillo-200 シリーズ互換 GPIO ドライバーでは Armadillo-400 シリーズで使用可能な GPIO のうち、一部だけしか操作 することができません。

デバイスファイルのパラメータは、以下の通りです。

表 8.7 Armadillo-200 シリーズ互換 GPIO ドライバーデバイスファイル

タイプ	メジャー番号	マイナー番号	デバイスファイル
キャラクタデバイス	10	185	/dev/gpio

ioctl の第1引数には、デバイスファイルのファイルディスクリプタを指定します。第2引数には、 GPIOを操作するためのコマンドを指定します。

表 8.8 Armadillo-200 シリーズ互換 GPIO ドライバー ioctl コマンド

コマンド	説明	第3引数の Type
PARAM_SET	第 3 引数で指定する内容で GPIO の状態を設定し ます	struct gpio_param
PARAM_GET	第3引数で指定する内容で GPIO の状態を取得し ます	struct gpio_param
INTERRUPT_WAIT	第3引数で指定する内容で GPIO の割込みが発生 するまで WAIT します	struct wait_param

第3引数には、()/include/linux/armadillo2x0_gpio.h に定義されている構造体「struct gpio_param」と「struct wait_param」を使用します。「struct gpio_param」は単方向リストになっているので、複数の GPIO を一度に制御する場合は next メンバを使用してください。また、リストの最後の next メンバには"O(NULL)"を指定してください。GPIO デバイスドライバーの詳細な使用方法については、GPIO 操作アプリケーション(atmark-dist/vendors/AtmarkTechno/Armadillo-440/gpioctrl)のソースコードを参考にしてください。

8.10. LED

Armadillo-400 シリーズの LED ドライバーは、LED クラスドライバーと Armadillo-200 シリーズ 互換 LED ドライバーの 2 つがあります。標準状態では、LED クラスドライバーが有効になっています。

8.10.1. LED クラス

/sys/class/leds/(LED_NAME) ディレクトリ以下のファイルによって、LED の制御を行うことが できます。

点灯/消灯の制御は、/sys/class/leds/(LED_NAME)/brightness ファイルによって行うことが できます。 brightness ファイルに 0 を書き込むと消灯、0 以外の数値を書き込むと点灯となります。

LED クラスでは、点滅などの制御はトリガーという仕組みを使用して行います。Armadillo-400 シ リーズでは、mmcO、timer、heartbeat、default-on のトリガーを使用することができます。各文字列 を、/sys/class/leds/(LED_NAME)/trigger ファイルに書き込むことでトリガーが有効になります。

mmc0 トリガーを有効にすると MMC/SD カードへの読み書きに連動して LED が点灯/消灯します。

timer トリガーにより、指定した周期で LED を点滅させることができます。 timer トリガーを有効に すると、新しく /sys/class/leds/(LED_NAME)/delay_on と /sys/class/leds/(LED_NAME)/ delay_off ファイルが作成されます。それぞれのファイルに点灯時間[msec]と消灯時間[msec]を書き 込むことで LED が点滅します。

heartbeat トリガーを有効にすると、鼓動のように LED が点滅します。

default-on トリガーを有効にすると、点灯状態で起動します。

LED_NAME と対応する LED の一覧を「表 8.9. LED 一覧」に示します。

表 8.9 LED 一覧

LED_NAME	対応する LED	デフォルトトリガー
red	LED3	なし
green	LED4	default-on
yellow	LED5	なし

8.10.2. Armadillo-200 シリーズ互換 LED ドライバー

Armadillo-200 シリーズ互換 LED ドライバーでは、対応するデバイスファイルに対して ioctl を発行 することにより、LED の操作を行うことができます。

Armadillo-200 シリーズ互換 LED ドライバーは標準状態では無効になっています。有効にするには Linux カーネルコンフィギュレーションで、 CONFIG_LEDS_GPIO を無効に、CONFIG_ARMADILLO2X0_LED を有 効にして、カーネルをビルドする必要があります。

LED に対応するデバイスファイルのパラメータは、以下の通りです。

表 8.10 LED ノード

タイプ	メジャー番号	マイナー番号	デバイスファイル
キャラクタデバイス	10	215	/dev/led

ioctl の第1引数には、デバイスファイルのファイルディスクリプタを指定します。第2引数には、 LED を操作するためのコマンドを指定します。

表 8.11 LED 操作コマンド

コマンド	説明	第3引数の Type
LED_RED_ON	LED3(赤)を点灯しま す	なし
LED_RED_OFF	LED3(赤)を消灯しま す	なし
LED_RED_STATUS	LED3(赤)の点灯状態 を取得します	状態を保存するバッファ(最小1バイト)
LED_RED_BLINKON	LED3(赤)の点滅を開 始します	なし

コマンド	説明	第3引数の Type
LED_RED_BLINKOFF	LED3(赤)の点滅を停 止します	なし
LED_RED_BLINKSTATUS	LED3(赤)の点滅状態 を取得します	状態を保存するバッファ(最小 1 バイト)
LED_GREEN_ON	LED(緑)を点灯します	なし
LED_GREEN_OFF	LED4(緑)を消灯しま す	なし
LED_GREEN_STATUS	LED4(緑)の点灯状態 を取得します	状態を保存するバッファ(最小1バイト)
LED_GREEN_BLINKON	LED4(緑)の点滅を開 始します	なし
LED_GREEN_BLINKOFF	LED4(緑)の点滅を停 止します	なし
LED_GREEN_BLINKSTATUS	LED4(緑)の点滅状態 を取得します	状態を保存するバッファ(最小1バイト)

LED デバイスドライバーの詳細な使用方法については、サンプルの LED 制御アプリケーション (atmark-dist/vendors/AtmarkTechno/Armadillo-440/ledctrl)のソースコードを参考にして ください。

8.11. ボタン

Armadillo-400 シリーズでは、ボタン入力はインプットデバイスとして実装されており、ユーザーランドとのインターフェースとしてイベントインターフェースを提供しています。

Armadillo-440 液晶モデルでは、Armadillo-440 本体にオンボードタクトスイッチ×1と、LCD 拡張ボードにボタン×3 が実装されています。

それぞれのボタンに対するイベントを、「表 8.12. Armadillo-440 液晶モデルボタンイベント」に示します。

ボタン	Туре	Code	Value
SW1	EV_KEY(1)	KEY_ENTER(28)	0 or 1
LCD_SW1	EV_KEY(1)	KEY_BACK(158)	0 or 1
LCD_SW2	EV_KEY(1)	KEY_MENU(139)	0 or 1
LCD_SW3	EV_KEY(1)	KEY_HOME(102)	0 or 1

表 8.12 Armadillo-440 液晶モデルボタンイベント

Armadillo-440 液晶モデルの標準状態では、ボタンのイベントデバイスは /dev/input/event0 に マップされます。

イベントデバイスの番号は、検出された順番に割り振られます。そのため、USB キーボードなど他のインプットデバイスが起動時に検出されると、ボタンのイベントデバイス番号は変わる可能性があります。

8.12. リアルタイムクロック

Armadillo-440 LCD 拡張ボード及び Armadillo-400 RTC オプションモジュールには、リアルタイム クロックが搭載されています。

リアルタイムクロックは、/dev/rtc0 として認識されます。Armadillo-440 液晶モデルに RTC オプ ションモジュールを接続した場合、RTC オプションモジュールのリアルタイムクロックが /dev/rtc0 となり、LCD 拡張ボードのリアルクロックは /dev/rtc1 として認識されます。

8.13. ウォッチドッグタイマー

Armadillo-400 シリーズで採用している i.MX25 プロセッサは、内蔵ウォッチドッグタイマーを有しています。

Armadillo-400 シリーズの標準ブートローダーでは、起動直後にこの内蔵ウォッチドッグタイマーを 有効にします。標準状態でのタイムアウト時間は 10 秒に設定されます。

Linux カーネルでは、自動でウォッチドッグタイマーをキックします。

もし、何らかの要因で Linux カーネルがフリーズしてウォッチドッグタイマーをキックできなくなり タイムアウトが発生すると、システムリセットが発生します。

8.14. パワーマネジメント

Armadillo-400 シリーズは Linux パワーマネジメントのスリープ機能をサポートします。スリープ状態では、アプリケーションの実行は一時停止し、カーネルはサスペンド状態となります。スリープ状態では外部デバイスの動作を停止するため、消費電力を抑えることができます。スリープ状態から実行状態に復帰すると、カーネルのリジューム処理が行われた後、アプリケーションの実行を再開します。

/sys/power/state ファイルに、standby もしくは mem を書き込むことにより、スリープモード へ移行することができます。また、スリープモード中にウェイクアップ要因による割り込みが発生する と、スリープモードから実行状態へ復帰します。

各モードによる、状態の違いは「表 8.13. スリープモード」を参照してください。power-on suspend 状態に比べ、suspend-to-RAM の方がより少ない消費電力でスリープすることができます。

スリープモード	state ファイル に書き込む文字 列	i.MX25 パワー モード	ウェイクアップ要因
power-on suspend	standby	Doze モード	シリアル入力、タッチスクリーン入 力、ボタン入力
suspend-to- RAM	mem	Stop モード	ボタン入力

表 8.13 スリープモード

ウェイクアップ要因になることができるデバイスを、ウェイクアップ要因にするかどうかは、各デバ イスに対応する sysfs エントリの power/wakeup ファイルで指定することができます。power/ wakeup ファイルに enabled と書き込むとウェイクアップ要因になり、 disabled と書き込むとウェイ クアップ要因ではなくなります。

「表 8.14. ウェイクアップ要因の指定」を参照してください。

デバイス	sysfs ファイル	初期状態
シリアルインターフェース 1	/sys/devices/platform/mxcintuart.1/tty/ ttymxc1/power/wakeup	enabled
シリアルインターフェース 2	/sys/devices/platform/mxcintuart.2/tty/ ttymxc2/power/wakeup	disabled
シリアルインターフェース 3	/sys/devices/platform/mxcintuart.4/tty/ ttymxc4/power/wakeup	disabled
タッチスクリーン	/sys/devices/platform/imx_adc.0/power/ wakeup	enabled
ボタン	/sys/devices/platform/gpio-keys.0/power/ wakeup	enabled

表 8.14 ウェイクアップ要因の指定

8.14.1. スリープ中の外部デバイスの扱いについて

Armadillo-400 シリーズでは、サスペンド処理で外部デバイスへの電源供給を全て停止します。

そのため、USB デバイスはスリープ状態に移行する前に、安全に取り外しができる状態にしておく必要があります。すなわち、USB メモリは umount しておく必要があります。リジューム時にデバイス検出が再度行われるため、USB デバイスはスリープ中に抜き差しすることができます。

一方で、microSD カードは、mount したままでスリープ状態に移行することができます。これを可 能にするために、SD ホストドライバーではリジューム時にプローブ処理を行わず、同じカードが挿入さ れているものとして扱います。そのため、スリープ中に microSD の抜き差しを行うことはできません。

Ethernet デバイスは実行状態に復帰後、ケーブルを抜き差ししたときと同様の処理が行われるため、 Auto-negotiation が有効になっている場合、リジューム後に Auto-negotiation が行われます。

初期状態の設定では、+3.3V_IO 出力はスリープ時に停止します。しかし、シリアルポート 2 および 4 をウェイクアップ要因に指定した場合、スリープ時も +3.3V_IO 出力が供給されます。

付録 A Hermit-At ブートローダー

Hermit-At は、アットマークテクノ製品に採用されている高機能ダウンローダー兼ブートローダーで す。Armadillo を保守モードで起動すると、Hermit-At ブートローダーのプロンプトが表示されます。 プロンプトからコマンドを入力することにより、フラッシュメモリの書き換えや、Linux カーネル起動 オプションの設定等 Hermit-At ブートローダーの様々な機能を使用することができます。ここでは、代 表的な機能について説明します。

A.1. version

バージョン情報を表示するコマンドです。

構文:version

図 A.1 version 構文

A.1.1. version 使用例

```
hermit> version
Hermit-At v2.0.0 (armadillo4x0) compiled at 23:03:08, Mar 08 2010
```

図 A.2 version の使用例

A.2. info

ボード情報を表示するコマンドです。

構文:info

図 A.3 info 構文

A.2.1. info 使用例

hermit> **info** Board Type: 0x00000440 Hardware ID: 0x00000300 DRAM ID: 0x0000002 Jumper: 0x0000001 Tact-SW: 0x0000000

A.3. memmap

フラッシュメモリと DRAM のメモリマップを表示するコマンドです。

構文:memmap

図 A.5 memmap 構文

A.3.1. memmap 使用例

```
hermit> memmap
0xa0000000:0xa1ffffff FLA all bf:8K bl:4x32K/l,255x128K/l
0xa0000000:0xa001ffff FLA bootloader bf:8K bl:4x32K/l
0xa0020000:0xa021ffff FLA kernel bf:8K bl:16x128K
0xa0220000:0xa1fdffff FLA userland bf:8K bl:238x128K
0xa1fe0000:0xa1ffffff FLA config bf:8K bl:1x128K
0x80000000:0x87ffffff RAM dram-1
```

図 A.6 memmap の使用例

A.4. mac

MAC アドレスを表示するコマンドです。

構文:mac

図 A.7 mac 構文

A.4.1. mac 使用例

```
hermit> mac
00:11:0c:00:00:00
```

図 A.8 mac の使用例

A.5. md5sum

メモリのある区間の md5sum 値を計算して表示するコマンドです。

構文:md5sum <開始アドレス> <サイズ>

図 A.9 md5sum 構文

A.5.1. md5sum 使用例

bootloader リージョンの先頭から 1024 Bytes の区間の md5sum 値を計算して表示するには、 「図 A.10. md5sum の使用例」のようにコマンドを実行します。

```
hermit> memmap
0xa0000000:0xa1ffffff FLA all bf:8K bl:4x32K/l,255x128K/l
0xa0000000:0xa001ffff FLA bootloader bf:8K bl:4x32K/l
0xa0020000:0xa021ffff FLA kernel bf:8K bl:16x128K
0xa0220000:0xa1fdffff FLA userland bf:8K bl:238x128K
0xa1fe0000:0xa1ffffff FLA config bf:8K bl:1x128K
0x80000000:0x87ffffff RAM dram-1
hermit> md5sum 0xa000000 1024
fd44ce938f65726dc59669f537154429
```

図 A.10 md5sum の使用例

A.6. erase

フラッシュメモリの消去を行うコマンドです。

構文:erase [アドレス]

図 A.11 erase 構文

A.6.1. erase 使用例

hermit> erase 0xa0fe0000

図 A.12 erase の使用例

A.7. setenv と clearenv

Linux カーネル起動オプションを設定するコマンドです。setenv で設定されたパラメータは、Linux カーネルブート時にカーネルに渡されます。clearenv を実行すると、設定がクリアされます。このパラ メータは、フラッシュメモリに保存され再起動後も設定は有効となります。

構文:setenv [起動オプション]... 説明:カーネル起動オプションを設定します。オプションを指定せずに実行すると、現在の設定を表示します。 構文:clearenv 説明:設定されているオプションをクリアします。

図 A.13 setenv/clearenv 構文

A.7.1. setenv/clearenv 使用例

```
hermit> setenv console=ttymxcl
hermit> setenv
1: console=ttymxcl
hermit> clearenv
hermit> setenv
hermit>
```

図 A.14 setenv と clearenv の使用例

A.7.2. Linux 起動オプション

Linux 起動オプションの例を、「表 A.1. よく使用される Linux 起動オプション」に示します。この他のオプションについては、linux-2.6/Documentation/kernel-parameters.txt を参照してください。

オプション	説明
console	カーネルコンソールとして使用するデバイスを指示します。
root	ルートファイルシステム関連の設定を指示します。
rootdelay	ルートファイルシステムをマウントする前に指定秒間待機します。
rootwait	ルートファイルシステムがアクセス可能になるまで待機します。
noinitrd	カーネルが起動した後に initrd データがどうなるのかを指示します。
nfsroot	NFS を使用する場合に、ルートファイルシステムの場所や NFS オプションを指示します。

表 A.1 よく使用される Linux 起動オプション

console オプションに ttymxc1,2,4 を指定すると、次回起動時から Hermit-At が使用するシリアルインターフェースも変更されます。

A.8. setbootdevice

Linux カーネルを格納しているブートデバイスを指定するコマンドです。この設定はフラッシュメモリに保存され、再起動後も設定は有効となります。

構文: setbootdevice flash 説明:フラッシュメモリの kernel リージョンに格納されたカーネルイメージを RAM に展開してブートします 構文: setbootdevice tftp <クライアント IP アドレス> <サーバー IP アドレス> [--kernel=<path>] [-userland=<path>] 説明:TFTP サーバーに置かれたカーネルまたは/およびユーザーランドイメージを取得し、RAM に展開して ブートします 構文: setbootdevice mmcblkOp**N** 説明:MMC/SD カードのパーティション**N**の /boot/ ディレクトリに置かれたカーネルイメージを RAM に

展開してブートします

図 A.15 setbootdevice 構文

A.8.1. setbootdevice の使用例

フラッシュメモリに格納されたカーネルイメージでブートするには、「図 A.16. ブートデバイスにフラッシュメモリを指定する」のようにコマンドを実行します。

hermit> **setbootdevice flash**

図 A.16 ブートデバイスにフラッシュメモリを指定する

TFTP サーバー(IP アドレス: 192.168.10.10)に置かれた linux.bin.gz というファイル名のカーネ ルイメージを取得してブートするには、「図 A.17. ブートデバイスに TFTP サーバーを指定する」のよ うにコマンドを実行します。

hermit> setbootdevice 192.168.10.10 192.168.10.1 --kernel=linux.bin.gz

図 A.17 ブートデバイスに TFTP サーバーを指定する

SD/MMC カードのパーティション 1 に格納されたカーネルイメージでブートするには、「図 A.18. ブートデバイスに SD/MMC カードを指定する」のようにコマンドを実行します。

hermit> setbootdevice mmcblk0p1

図 A.18 ブートデバイスに SD/MMC カードを指定する

A.9. frob

指定したアドレスのデータを読み込む、または、変更することができるモードに移行するコマンドです。

表 A.2 frob コマンド

frob コマンド	説明
peek [addr]	指定されたアドレスから 32bit のデータを読み出します。
peek16 [addr]	指定されたアドレスから 16bit のデータを読み出します。
peek8 [addr]	指定されたアドレスから 8bit のデータを読み出します。

frob コマンド	説明
poke [addr] [value]	指定されたアドレスに 32bit のデータを書き込みます。
poke16 [addr] [value]	指定されたアドレスに 16bit のデータを書き込みます。
poke8 [addr] [value]	指定されたアドレスに 8bit のデータを書き込みます。

A.10. tftpdl

TFTP プロトコルを使用して TFTP サーバーからファイルをダウンロードし、フラッシュメモリの書き換えを行うコマンドです。

構文:tftpdl <クライアント IP アドレス> <サーバー IP アドレス> <オプション> [オプション]... 説明:自 IP アドレスをクライアント IP アドレスに設定し、サーバー IP アドレスで指定された TFTP サーバー に置かれたイメージをダウンロードし、フラッシュメモリに書き込みます。

図 A.19 tftpdl 構文

表 A.3 tftpdl オプション

オプション	説明
bootloader=filepath	bootloader リージョンに書き込むファイルを filepath で指定しま
	す。
kernel=filepath	kernel リージョンに書き込むファイルを filepath で指定します。
userland=filepath	userland リージョンに書き込むファイルを filepath で指定します。
fake	ファイルのダウンロードだけを行い、フラッシュメモリには書き込ま ないよう指定します。

A.10.1. tdtpdl の使用例

A.11. tftpboot

TFTP プロトコルを使用して TFTP サーバーからファイルをダウンロードし、RAM に展開してカーネ ルをブートするコマンドです。tftpdl と異なり、フラッシュメモリの書き換えを行いません。また、 setbootdevice で tftp を指定したときと異なり、設定は保存されません。

構文:tftpboot <クライアント IP アドレス> <サーバー IP アドレス> <オプション> [オプション]... 説明:自 IP アドレスをクライアント IP アドレスに設定し、サーバー IP アドレスで指定された TFTP サーバー に置かれたイメージをダウンロードし、RAM に展開したあとブートします。

図 A.21 tftpboot 構文

オプションには、「表 A.3. tftpdl オプション」と同じものを指定することができます。--fake オプションを指定したときは、ファイルのダウンロードだけを行い、カーネルのブートを行いません。

A.11.1. tdtpboot の使用例

hermit> tftpboot 192.168.10.10 192.168.10.1kernel=linux.bin.gz
Client: 192.168.10.10 Server: 192.168.10.1 Region(kernel): linux.bin.gz
initializing net-deviceOK Filename : linux.bin.gz
 Filesize : 1841551
Uncompressing kernel:netdone. Uncompressing ramdisk.
done. 1 Linux version 2.6.26-at6 (2.6.26) (atmark@sv-build) (gcc version 4.3.2 (Debian 4.3.2-1.1)) #6 PREEMPT Wed Mar 10 19:19:13 JST 2010 2

図 A.22 tftpboot の使用例

1 カーネルおよびユーザーランドのイメージ RAM 上に展開しています。

2 カーネルがブートされ、カーネルの起動ログが表示されます。

A.12. boot

setbootdevice で指定されたブートデバイスから Linux カーネルをブートするコマンドです。

構文:boot

図 A.23 boot 構文

A.12.1. boot 使用例

hermit> boot Uncompressing kernel.....done. Uncompressing ramdisk..... Ødone. อ Doing console=ttymxc1 Linux version 2.6.26-at6 (2.6.26) (atmark@sv-build) (gcc version 4.3.2 (Debian ً₿ 4.3.2-1.1)) #6 PREEMPT Wed Mar 10 19:19:13 JST 2010 CPU: ARM926EJ-S [41069264] revision 4 (ARMv5TEJ), cr=00053177 Machine: Armadillo-440 Memory policy: ECC disabled, Data cache writeback CPU0: D VIVT write-back cache CPU0: I cache: 16384 bytes, associativity 4, 32 byte lines, 128 sets CPU0: D cache: 16384 bytes, associativity 4, 32 byte lines, 128 sets Built 1 zonelists in Zone order, mobility grouping on. Total pages: 32512 Kernel command line: console=ttymxc1 MXC IRQ initialized : •

図 A.24 boot の使用例

- 1 カーネルおよびユーザーランドのイメージ RAM 上に展開しています。
- 2 setenv でカーネル起動オプションを設定している場合、ここで表示されます。ここまでは Hermit-At が表示しています。
- 3 カーネルがブートされ、カーネルの起動ログが表示されます。

A.13. バージョンに関する注意

Armadillo-440 の基板リビジョン Rev.C1 以降 (S/N 100201-2195 以降) に hermit-at v2.0.0 を ベースに生成したブートローダーイメージ(loader-armadillo4x0-v2.0.0.bin 等)及び linux-2.6.26-at7

をベースに生成したカーネルイメージ(linux-a400-1.00.bin.gz) を書き込むと、カーネルが起動しない不 具合があります。この問題は、Rev.C1 以降の基板、hermit-at v2.0.0 及び linux-2.6.26-at7 という組 み合わせのみで発生し、それ以外の組み合わせでは発生しません。

Armadillo-440 の基板リビジョン Rev.C1 以降 (S/N 100201-2195 以降) には、hermit-at v2.0.1 以降をベースに生成したブートローダーイメージ(loader-armadillo4x0-v2.0.1.bin 以降)を使用してくだ さい。^[1]

^{[&}lt;sup>1]</sup>Armadillo-440 Rev.C1 以降は、出荷状態で loader-armadillo4x0-v2.0.1.bin 以降が書き込まれています。

改訂履歴

バージョン	年月日	改訂内容
1.0.0	2010/03/12	・初版発行
1.1.0	2010/04/28	 「1. はじめに」、「2. システム概要」、「3. 作業の前に」、「5. フラッシュメモリの書き換え方法」、「6. ビルド」、「7. カーネル/ユーザーランドの配置」に Armadillo-420 に関する情報追記 「2.3. Armadillo-440 液晶モデル基本仕様」に CON14 3/4 ピンの機能変更について追記 「図 6.5. Hermit-At ソースアーカイブの展開」のディレクトリ名誤記修正 「表 7.2. カーネルイメージのダウンロード先 URL」、「図 7.5. カーネルイメージの配置」、「表 7.3. Debian アーカイブのダウンロード先 URL」、「図 7.5. カーネルイメージの配置」、「表 7.4. Atmark-Dist イメージのダウンロード先 URL」、「図 7.7. Atmark-Dist イメージによるルートファイルシステムの構築例」の URL 誤記修正 「A.13. バージョンに関する注意」に基板リビジョン Rev.C1 使用時の注意書き追加

株式会社アットマークテクノ 060-0035 札幌市中央区北5条東2丁目 AFT ビル6F TEL 011-207-6550 FAX 011-207-6570

Armadillo-400 シリーズソフトウェアマニュアル Version 1.1.0 2010/04/28