
Errata: EP9315 - Silicon revision: E0
Reference EP9315 Data Sheet revision DS638PP4 dated March 2005.
Determining the Silicon Revision of the Integrated Circuit

On the front of the integrated circuit, directly under the part number, is an alpha-numeric line. Characters 5
and 6 in this line represent the silicon revision of the chip. For example, this line indicates that the chip is a
“E0” revision chip:

 EFWAE0AM0340

This Errata is applicable only to the E0 revision of the chip.

Please refer to AN273, “EP93xx Rev E0 Design Guidelines” for additional information.

AC’97

Description

Disabling audio transmit by clearing the TEN bit in one of the AC97TXCRx registers will not clear out any
remaining bytes in the TX FIFO. If the number of bytes left in the FIFO is not equal to a whole sample or
samples, this will throw off subsequent audio playback causing distortion or channel swapping.

Workaround

To stop audio playback, do the following:

1) Pause DMA

2) Poll the AC97SRx register until either TXUE or TXFE is set.

3) Clear the TEN bit.

This ensures that the TX FIFO is empty before the transmit channel is disabled.
Copyright © Cirrus Logic, Inc. 2005
(All Rights Reserved)

Cirrus Logic, Inc.
http://www.cirrus.com ER638E0

APR ‘05

http://www.cirrus.com
http://www.cirrus.com

Analog Touch Screen

Description

After power-on-reset, PENSTS in AR_SETUP2 register has the correct default value of “0”. But after the first
touch on the screen, PENSTS is stuck at “1” regardless if the screen is pressed or not.

Workaround

Configure the hardware so that as long as there is pressure on the touch surface, interrupts will occur
periodically. This is done by setting the register ARXYMAXMIN so that the MIN values are 0x0 and the MAX
values are 0xff. This causes the hardware to believe that while there is pressure on the surface, the pointing
device is always moving. The frequency of interrupts is programmable in TSSETUP by adjusting the settling
times and number of samples taken for each point. If a touch event takes longer than this time to occur, it
is assumed that the touch surface has been released. For an example of this implementation, please see
the source code provided with our Linux and WinCE Touch Screen drivers.

Ethernet

Description 1

The Ethernet controller does not correctly receive frames that have a size of 64 bytes.

Workaround

In order to receive frames of 64 bytes, enable the RCRCA bit in RxCTL. This will prevent the Ethernet
controller from discarding the 64-byte-long frames.

Description 2

When there is inadequate AHB bus bandwidth for data to be transferred from the Ethernet controller FIFO
to the receive descriptor, the Ethernet FIFO will overflow and cause the Ethernet controller to fail to receive
any more packets.

This problem will also occur if the processor is too busy to service incoming packets in a timely manner. By
the time that new receive descriptors are available, the data in the FIFO will contain frames that are
corrupted.

It is the job of the system designer to ensure that there is adequate bandwidth for the applications being run.

Workaround

This is a rare occurrence, however at a system level it is important to reserve adequate bandwidth for the
Ethernet controller. This can be accomplished by some of the following:

- Reducing the bandwidth use of other bus masters in the system.
- Lowering Ethernet rate to half duplex or 10Mbit if higher bandwidth is not required.
- Insuring that the Ethernet controller receive descriptor processing is given a high enough priority to

ensure that the controller never runs out of receive descriptors.
2 ER638E0

HDLC

Description

When the final byte of a received packet is read into the DMA controller's buffer, the software will be notified
by an HDLC RFC interrupt. However, the DMA controller may not have written the currently buffered part of
the packet to memory, so that the last one to fifteen bytes of a packet may not be accessible.

Workaround

To insure that the DMA channel empties the buffer, do the following (in the HDLC interrupt handler, for
example):

1) Note the values in the MAXCNTx and REMAIN registers for the DMA channel. The difference is the num-
ber of bytes read from the UART/HDLC, which is the size of the HDLC packet. Call this number N. Note
that the BC field of the UART1HDLCRXInfoBuf register should also be N.

2) Temporarily disable the UART DMA RX interface by clearing the RXDMAE bit in the UART1DMACtrl reg-
ister.

3) Wait until the difference between the CURRENTx and BASEx registers in the DMA channel is equal to
N + 1.

At this point, the rest of the packet is guaranteed to have been written to memory. Using this method will
cause an extra byte to be read from the UART by the DMA channel and also written to memory. This last
byte should be ignored.

SDRAM Controller

Description 1

Using the SDRAM controller in auto-precharge mode will produce system instability at external bus speeds
greater than 50MHz.

Workaround

Do not turn on the auto-precharge feature of the SDRAM controller if the external bus speed will be greater
than 50 MHz.

Description 2

When the SDRAM controller is configured for PRECHARGE ALL command, the actual sequence is not
always issued to the SDRAM device(s).

Workaround

Do a read from each SDRAM bank so that a PRECHARGE command is issued to each bank of the SDRAM
device. This will satisfy the required SDRAM initialization sequence.

Due to the effectiveness and simplicity of the software workaround, no silicon fix is planned.
ER638E0 3

 Raster

EP9312 User's Guide Update

As designed, horizontal clock and data are not aligned. Where horizontal clock gating is required, set
HACTIVESTRTSTOP equal to HCLKSTRTSTOP+5.

Description 1

If the raster engine is using single scan mode, two and two thirds per pixel mode (3 bits per pixel over an 8-
bit bus) works correctly. If the raster engine is programmed to use two and two thirds pixels per clock shift
mode with dual scan enabled, it will not generate valid timings for dual scan displays.

Workaround

There is no known workaround at this time.

Description 2

YCrCb formatted video will not produce the valid synchronization signals in 656 video mode.

Workaround

Design the system with an NTSC/PAL DAC that accepts RGB input signals.

IDE

Description 1 - Read Bug #1

If a data-in burst is terminated after an odd number of 16-bit words have been read from the device, the last
16-bit word of the burst is lost. Like Write Bug #2, no CRC error occurs. Note that this bug always occurs
in pairs. If it actually happens one time, there will always be an odd number of 16-bit words left to be read
from the device. Therefore, it will happen again either in the middle of the remaining data (leaving an even
number of words remaining), or at the end of the request.

This can be detected by seeing that the device has no more data to transfer (it has deasserted DMARQ and
has asserted INTRQ) but the DMA controller still expects more data to transfer.

Workaround

Once any of the IDE bugs is detected, retry the request. After a certain number of consecutive requests can
not be completed successfully, including retries, the transfer mode is backed down (i.e., moving to UDMA1
instead of UDMA2). Lower-speed transfer modes are less likely to be affected by these bugs, so a slower
data transfer rate with less retries will be better than a higher data transfer rate with more retries. If the
number of consecutive requests that can not be completed is large enough, the mode will be dropped down
from UDMA to PIO.

(Continued)
4 ER638E0

The transfer mode and retries are managed independently for the two devices on the IDE bus. So, if the
master device doesn't excite these bugs, but the slave device does, the transfer rate of the master device
isn't affected by the slower mode(s)/retries on the slave device.

A fix for this bug has been implemented for silicon revision E1.

Description 2 - Write Bug #1

If DDMARDYn is deasserted at the appropriate time (which is within the ATA spec. and is therefore valid),
32 bits of data to be written to the device is lost. Since the upper 16 bits of that word is written to the IDE
data bus, but never strobed to the device, this will also result in a CRC error (the EP93xx CRC generator
will see the 16-bit value, but the device CRC generator will not).

This can be detected in two ways. The first indication is the fact that the DMA controller will complete the
transfer while the device is still requesting data. This is not guaranteed to occur due to the Write Bug #2;
the data from one incident of this write bug will be offset by the data from two incidents of Write Bug #2. The
other is to look for CRC errors. If the device wants more data, the DMA controller is given more data, 32
bits at a time, until the device is has received the requested data.

Workaround

See the workaround in IDE Description 1 (Read Bug #1)

A fix for this bug has been implemented for silicon revision E1.

Description 3 - Write Bug #2

If a data-out burst is terminated after an odd number of 16-bit words have been written to the device, the
last 16-bit word of the burst is repeated as the first 16-bit word of the subsequent burst. This also results in
the last 16-bit word of data being "lost" since it is never written to the device. No CRC error occurs since the
same data is seen by both the EP93xx CRC generator and the device CRC generator. If this bug occurs
only once during a single request, and the first write bug does not occur during that request, then this is an
undetectable situation since the final "extra" 16-bit word is transferred to the device, which simply ignores it.

This can be detected by seeing that the device no longer requests data (it has deasserted DMARQ and has
asserted INTRQ) but the DMA controller has more data to transfer.

A single instance of this bug in a request can be detected by reading back the data from the drive after each
write. This is not acceptable from a performance point of view. Fortunately, this bug only appears to be
triggered by old, smaller drives.

Workaround

See the workaround in IDE Description 3 (Read Bug #1)

A fix for this bug has been implemented for silicon revision E1.
ER638E0 5

Reset

Description 1

No SDCLK after system reset. This occurs when switching from the crystal clock to the PLL clock upon a
system reset. When this condition occurs the processor will not start its boot sequence.

Workaround

Implement the recommended external reset circuit described in AN258, “EP93xx Power-up and Reset
Luckup Workaround”, which can be found at http://www.cirrus.com/en/pubs/appNote/AN258REV2.pdf

A fix for this bug has been implemented for silicon revision E1.

Description 2

SDRAM controller gets stuck in a busy state after resetting from sync mode. When this condition occurs the
processor will not complete its boot sequence.

Workaround

Implement the recommended external reset circuit described in AN258, “EP93xx Power-up and Reset
Luckup Workaround”, which can be found at http://www.cirrus.com/en/pubs/appNote/AN258REV2.pdf

A fix for this bug has been implemented for silicon revision E1.

Description 3

Double reset after a software reset is issued. This condition occurs when the state of CS1 is intended to be
latched as a logic 0 during reset. However, because of a slow slew rate, they are latched as a logic 1 before
they have a chance to reach their final value. When this happens, the Watchdog reset, which is based on a
counter, is directly set and generates another reset.

Workaround

There is no work around at this time.

A fix for this bug has been implemented for silicon revision E1.

Description 4

The internal RTC oscillator is susceptible to noise which can lead to extra clocks on the internal 32.768-kHz
signal.

Workaround

Please refer to application note AN265, “EP93xx RTC Oscillator Circuit”, which can be found at
http://www.cirrus.com/en/pubs/appNote/AN265REV1.pdf

No fix of this bug is planned for future silicon revisions.
6 ER638E0

Software Reset

Description

The EP93xx device may hang during the boot process after a software or watchdog reset has been issued.

Workaround

Implement the recommended external reset circuit described in AN258, which can be found at
http://www.cirrus.com/en/pubs/appNote/AN258REV2.pdf

A fix for this bug has been implemented for silicon revision E1.

USB and DMA Arbitration

Description

The EP93xx device can hang during AHB arbitration if the USB controller and the DMA controller are used
at the same time. This issue has been observed only when the EP93xx is configured to use 16-bit memory
boot mode. It has not been observed when the device is configured for 32-bit memory boot mode.

Workaround

Either do not use the DMA controller or do not use the USB controller. Items potentially affected by not using
the DMA controller are IDE, audio, SSP, UART, IrDA, and external DMA. Most of these items can be used
in PIO mode with little performance impact. Refer to the User's Guide for details about DMA controller
operation.

A fix for this bug has been implemented for silicon revision E1.

I2S Audio

Description

I2S slave mode operation does not function as expected when I2SonAC97 bit (DeviceCfg[6]) is set in the
DeviceCfg register causing the ASYNC pin to be driven as LRCLK input.

Workaround

Use I2SonSSP (DeviceCfg[7]) mode instead of I2SonAC97 (DeviceCfg[6]).

A fix for this bug has been implemented for silicon revision E1.
ER638E0 7

MaverickCrunchTM

Various MaverickCrunch errata share common features. The individual descriptions will refer to these
common features.

1) For several errata, an instruction appears in the coprocessor pipeline, but does not execute for one of
the following reasons:

- It fails its condition code check.
- A branch is taken and it is one of the two instructions in the branch delay slot.
- An exception occurs.
- An interrupt occurs.

2) For several errata, the coprocessor must be either operating in serialized mode or not be operating in
serialized mode. The coprocessor is operating in serialized mode if and only if both:

- At least one exception type is enabled by setting one of the following bits in the DSPSC: IXE, UFE,
OFE, or IOE.

- Serialization is not specifically disabled by setting the AEXC bit in the DSPSC.

3) For several errata, an instruction must update an accumulator. These include all of the following:

- Moves to accumulators: cfmva32, cfmva64, cfmval32, cfmvam32, cfmvah32.
- Arithmetic into accumulators: cfmadd32, cfmadda32, cfmsub32, cfmsuba32.

4) For several errata, an instruction must be any two-word coprocessor load or store. These include cfldr64,
cfldrd, cfstr64, and cfstrd.

The following table summarizes MaverickCrunch errata.

Several of the errata are sensitive to certain coprocessor instructions appearing early in an interrupt or
exception handler. To avoid seeing any errata due to such instructions, insure that no coprocessor
instructions appear in the instruction stream within the first seven instructions after an interrupt or exception.
Note that, typically, the first three instructions in this stream would be a branch in the jump table followed by
the two instructions in the branch delay slot.

Erratum Failing Coprocessor Instructions Mode Result Workaround
1. two-word load / store register or memory corruption change sequence
2. instruction with source operand bad calculation or stored value change sequence
3. two-word load / store register or memory corruption change sequence

4. two-word store forwarding,
not serialized memory corruption change sequence

5. cfrshl32, cfrshl64 serialized bad calculation unserialized mode,
substitute ARM code sequence

6. ldr32, mv64lr bad sign extension in register add correcting code sequence
7. accumulator updates accumulator corruption change sequence
8. accumulator updates accumulator corruption change sequence
9. accumulator updates accumulator corruption change sequence
10. accumulator updates serialized accumulator corruption unserialized mode
11. two-word load / store memory or register corruption change sequence
8 ER638E0

Description 1

Under certain circumstances, data in coprocessor registers or in memory may be corrupted. The following
sequence of instructions will cause the corruption:

1) Let the first instruction be both:

- any coprocessor instruction that is not executed1.
- stalled by the coprocessor due to an internal dependency.

2) Let the second instruction be any two-word coprocessor load or store4.

If the second instruction is a load, the upper word in the target register will generally get an incorrect value.
If the second instruction is a store, the word immediately following the second target memory location will
be written; that is, instead of just writing two consecutive 32-bit words (a 64-bit value or a double value) to
memory, a third 32-bit word immediately following this will be written, leading to memory corruption.

Consider a simple example with a store instruction:
 cfaddne c0, c1, c2 ; assume this does not execute
 cfstr64 c3, [r2, #0x0]

Three words will be written to memory. The correct values will appear at the memory location pointed to by
r2, and r2 + 0x4. Another value will be written at r2 + 0x8.

Consider now an example with a load instruction:
 cfaddne c0, c1, c2 ; assume this does not execute
 cfldrd c3, [r2, #0x0]

The final value in c3 will be incorrect. The lower 32 bits will be correct, while the upper 32 bits will be
incorrect.

Finally, consider a case where a branch occurs:
 target
 cfldrd c3, [r2, #0x0]
 b target
 nop
 cfadd c0, c1, c2 ; though in pipeline, this does not execute

Note: The above examples assume that the cfaddne or cfadd would busy-wait (for whatever reason) if
actually executed. If not, the execution of the following instruction would be correct.

(Continued)
ER638E0 9

Workaround

The simplest workaround is to insure that no two such instructions ever appear in the instruction stream
consecutively. Specifically, a conditional coprocessor instruction should not precede a load/store 64/double.
Simply inserting another ARM or coprocessor instruction accomplishes this:
 cfaddne c0, c1, c2 ; assume this does not execute
 nop ; inserted extra instruction here
 cfldrd c3, [r2, #0x0]

Cases where branches may be taken also needs to be handled. In this particular case, the first instruction
is moved earlier in the instruction stream by exchanging it with the previous one:
 target
 cfldrd c3, [r2, #0x0]
 b target
 cfadd c0, c1, c2 ; though in pipeline, this does not execute
 nop

To avoid this error when entering exception and interrupt handlers, the first instruction in an interrupt or
exception handler should not be a coprocessor instruction. Since the first instruction is normally a branch,
this error should not appear.

Description 2

Under certain circumstances, incorrect values may be used for arithmetic calculations or stored in memory.
The error appears as follows.

1) Execute a coprocessor instruction whose target is one of the coprocessor general purpose register c0
through c15.

2) Let the second instruction be an instruction with the same target, but not be executed1.

3) Execute a third instruction at least one of whose operands is the target of the previous two instructions.

For example, assume no pipeline interlocks other than the dependencies involving register c0 in the
following instruction sequence:
 cfadd32 c0, c1, c2
 cfsub32ne c0, c3, c4 ; assume this does not execute
 cfstr32 c0, [r2, #0x0]

In this particular case, the incorrect value stored at the address in r2 is the previous value in c0, not the
expected one resulting from the cfadd32.

(Continued)
10 ER638E0

Workaround

Insure that this kind of sequence of instructions does not occur. Note that adding a small number of
intervening instructions may not be sufficient to avoid this problem. If such a sequence must occur, insure
that the first and third instructions are sufficiently far apart in the instruction stream by placing five other
instructions between them:
 cfadd32 c0, c1, c2
 nop ; inserted extra instruction here
 nop ; inserted extra instruction here
 cfsub32ne c0, c3, c4 ; assume this does not execute
 nop ; inserted extra instruction here
 nop ; inserted extra instruction here
 nop ; inserted extra instruction here
 cfstr32 c0, [r2, #0x0]

The five intervening instructions need not be nops and may appear before or after the second instruction.

Note that it is the instruction stream as executed by the processor, not the instructions as they appear in the
source code, which is relevant. Hence, cases where the program flow changes between the first and third
instruction must be considered.

To avoid this error when entering exception and interrupt handlers, the first five instructions of an exception
or interrupt handler should not be coprocessor instructions.

Description 3

Under certain circumstances, data in coprocessor general purpose registers or in memory may be
corrupted. The error appears as follows.

1) Let the first instruction be a serialized instruction that does not execute1. For an instruction to be serial-
ized, at least one of the following must be true:

- The processor must be operating in serialized2 mode.
- The instruction must move to or from the DSPSC (either cfmv32sc or cfmvsc32).

2) Let the immediately following instruction be a two-word coprocessor load or store4.

In the case of a load, only the lower 32 bits (the first word) will be loaded into the target register. For example:
 cfadd32ne c0, c1, c2 ; assume this does not execute
 cfldr64 c3, [r2, #0x0]

The lower 32 bits of c3 will correctly become what is at the memory address in r2, but the upper 32 bits of
c3 will not become what is at address r2 + 0x4.

In the case of a store, only the lower 32 bits (the first word) will be stored into memory. For example:
 cfadd32ne c4, c5, c6 ; assume this does not execute
 cfstr64 c3, [r2, #0x0]

The lower 32 bits of c3 will be correctly written to the memory address in r2, but the upper 32 bits of c3 will
not be written.

(Continued)
ER638E0 11

Workaround

Separating the first and second instruction by one instruction will avoid this error whether or not the
coprocessor is operating in serialized or unserialized mode. For example:
 ; load sequence
 cfadd32ne c0, c1, c2 ; assume this does not execute
 nop ; inserted extra instruction here
 cfldr64 c3, [r2, #0x0] ; store sequence
 cfadd32ne c4, c5, c6 ; assume this does not execute
 nop ; inserted extra instruction here
 cfstr64 c3, [r2, #0x0]

Note that the effect of branches should also be accounted for, as it is the instruction stream as seen by the
coprocessor that matters, not the order of instructions in the source code. The two instructions following a
taken branch may be seen by the coprocessor and then not executed, and would be treated exactly as the
first instruction above.

To avoid this error when entering exception and interrupt handlers, the first instruction in an interrupt or
exception handler should not be a coprocessor instruction. Since the first instruction is normally a branch,
this error should not appear.

Description 4

When the coprocessor is not in serialized mode2 and forwarding is enabled, memory can be corrupted when
two types of instructions appear in the instruction stream with a particular relative timing.

1) Execute an instruction that is a data operation (not a move between ARM and coprocessor registers)
whose destination is one of the general purpose register c0 through c15.

2) Execute an instruction that is a two-word coprocessor store (either cfstr64 or cfstrd), where the destina-
tion register of the first instruction is the source of the store instruction, that is, the second instruction
stores the result of the first one to memory.

3) Finally, the first and second instruction must appear to the coprocessor with the correct relative timing;
this timing is not simply proportional to the number of intervening instructions and is difficult to predict in
general.

The result is that the lower 32 bits of the result stored to memory will be correct, but the upper the 32 bits
will be wrong. The value appearing in the target register will still be correct.

Workaround

One workaround is to operate the coprocessor without forwarding enabled, with a possible decrease in
performance.

Another is to operate in serialized mode by enabling at least one exception, with significantly reduced
performance.

Another workaround is to insure that at least seven instructions appear between the first and second
instructions that cause the error.

(Continued)
12 ER638E0

Note: The effect of branches should also be accounted for, as it is the instruction stream as seen by the
coprocessor that matters, not the order of instructions in the source code. To avoid this error when entering
exception and interrupt handlers, the first seven instruction in an interrupt or exception handler should not
be a coprocessor instructions.

Description 5

When operating in serialized mode2, cfrshl32 and cfrshl64 do not work properly. The instructions shift by an
unpredictable amount, but cause no other side effects.

Workaround

One workaround is to avoid these instructions. With this approach, an alternative instruction sequence may
accomplish the shift with the following steps:

- Move the data to be shifted to ARM register(s)
- Shift the data using non-coprocessor instructions
- Move the shifted data back to the coprocessor.

Another workaround is to never operate in serialized mode. With this approach, synchronous exceptions are
not possible.

Description 6

If an interrupt occurs during the execution of cfldr32 or cfmv64lr, the instruction may not sign extend the
result correctly.

Either instruction places a 32 bit value into the lower half of one of the coprocessor general purpose registers
c0 through c15 and sign extends the high (32nd) bit through the upper half of the register. If an IRQ or FIQ
to the ARM processor interrupts either of these instructions at the right time, the coprocessor will properly
load the low 32 bits of the target register, but instead of sign extending it will replicate the low 32 bit into the
upper 32 bits. Code that depends on sign extension will fail to operate correctly.

Workaround

Possible workarounds include:

- Disable interrupts when executing cfldr32 or cfmv64lr instructions.
- Avoid executing these two instructions.
- Do not depend on the sign extension to occur; that is, ignore the upper word in any calculations

involving data loaded using these instructions.
- Add extra code to sign extend the lower word after it is loaded by explicitly forcing the upper word

to be all zeroes or all ones, as appropriate. It is possible to do this selectively in exception or interrupt
handler code. If the instruction preceding the interrupted instruction can be determined, and it is a
cfldr32 or cfmv64lr, the instruction may be re-executed or explicitly sign extended before returning
from interrupt or exception.
ER638E0 13

Description 7

The coprocessor can incorrectly update one of its destination accumulators even if the coprocessor
instruction should not have been executed or is canceled by the ARM processor. This error can occur if the
following is true:

1) The first instruction must be a coprocessor compare instruction, one of cfcmp32, cfcmp64, cfcmps, and
cfcmpd.

2) The second instruction:

- has an accumulator as a destination3.
- does not execute1.

Example 1: In this case the second instruction may modify a2 even if the condition is not matched.
 cfcmp32 r15, c0, c5
 cfmva64ne a2, c8

Example 2: In this case the second instruction may modify a2 even if an interrupt or exception causes it to
be canceled and re-executed after the interrupt/exception handler returns.
 cfcmp32 r15, c0, c5
 cfmadda a2, a2, c0, c1

Workaround

The workaround for this issue is to insure that at least one other instruction appears between these
instructions. For example, possible fixes for the instructions sequences above are:
 cfcmp32 r15, c0, c5
 nop
 cfmva64ne a2, c8
and
 cfcmp32 r15, c0, c5
 nop
 cfmadda a2, a2, c0, c1

Description 8

If a data abort occurs on an instruction preceding a coprocessor data path instruction that writes to one of
the accumulators3, the accumulator may be updated even though the instruction was canceled.

For example:
 str r7, [r0, #0x1d] ; assume this causes a data abort
 cfmadda32 a0, a2, c0, c1

The second instruction will update a0 even though it should be canceled due to the data abort on the
previous instruction.

(Continued)
14 ER638E0

Workaround

A complete software workaround requires ensuring that data aborts do not occur due to any instruction
immediately preceding a coprocessor instruction that writes to an accumulator. The only way to ensure this
is to not allow memory operations immediately preceding these types of instructions. For example, the fixes
for the instructions above are:
 str r7, [r0, #0x1d] ; assume this causes a data abort
 nop
 cfmadda32 a0, a2, c0, c1

Description 9

The coprocessor will erroneously update an accumulator if the coprocessor instruction that updates an
accumulator is canceled and is followed by a coprocessor instruction that is not a data path instruction. This
error will occur under the following conditions:

1) The first instruction:

- must update a coprocessor accumulator3.
- does not execute1.

2) The second instruction is not a coprocessor datapath instruction. Coprocessor data path instructions
include any instruction that does not move data to or from memory or to or from the ARM registers.

For example:
 cfmva64ne a2, c3
 cfmvr64l r4, c15

If the first instruction should not execute or is interrupted, it may incorrectly update a2.

Workaround

Because any instruction may be canceled due to an asynchronous interrupt, the most general software
workaround is to insure that no instruction that updates an accumulator is followed immediately by a non-
datapath coprocessor instruction. For example, the fix for the instruction sequence above is:
 cfmva64ne a2, c3
 nop
 cfmvr64l r4, c15

Description 10

An instruction that writes a result to an accumulator3 may cause corruption of any of the four accumulators
when the coprocessor is operating in serialized mode2.

For example, the following sequence of instructions may corrupt a2 if the second instruction is not executed.
 cfmadda32 a0, a2, c0, c1
 cfmadda32ne a2, c3, c0, c1

Workaround

The only workaround for this issue is to operate the coprocessor in unserialized mode.
ER638E0 15

Description 11

An erroneous memory transfer to or from any of the coprocessor general purpose registers c0 through c15
can occur given the following conditions are satisfied:

1) The first instruction:

- is a two-word load or store4.
- fails its condition code check.
- does not busy-wait.

2) The second consecutive instruction:

- is a coprocessor load or store.
- is executed.
- does not busy-wait.

When the error occurs, the result is either coprocessor register or memory corruption. Here are several
examples:
 cfstr64ne c0, [r0, #0x0] ; assume does not execute
 cfldrs c2, [r2, #0x8] ; could corrupt c2!

 cfldrdge c0, [r0, #0x0] ; assume does not execute
 cfstrd c2, [r2, #0x8] ; could corrupt memory!

 cfldr64ne c0, [r0, #0x0] ; assume does not execute
 cfldrdgt c2, [r2, #0x8] ; could corrupt c2!

Workaround

The software workaround involves avoiding a pair of consecutive instructions with these properties. For
example, if a conditional coprocessor two-word load or store appears, insure that the following instruction
is not a coprocessor load or store:
 cfstr64ne c0, [r0, #0x0] ; assume does not execute
 nop ; separate two instructions
 cfldrs c2, [r2, #0x8] ; c2 will be ok

Another workaround is to insure that the first instruction is not conditional:
 cfstr64 c0, [r0, #0x0] ; executes
 cfldrs c2, [r2, #0x8] ; c2 will be ok

Note: If both instructions depend on the same condition code, the error should not occur, as either both or
neither will execute.
16 ER638E0

Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find one nearest you go to www.cirrus.com
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD
TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-
TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE
USES.

Cirrus Logic, Cirrus, the Cirrus Logic logo designs, and MaverickCrunch are trademarks of Cirrus Logic, Inc. All other brand and product names in this document
may be trademarks or service marks of their respective owners.
Microsoft and Windows are registered trademarks of Microsoft Corporation.
Microwire is a trademark of National Semiconductor Corp. National Semiconductor is a registered trademark of National Semiconductor Corp.
Texas Instruments is a registered trademark of Texas Instruments, Inc.
Motorola is a registered trademark of Motorola, Inc.
LINUX is a registered trademark of Linus Torvalds.
ER638E0 17

http://www.cirrus.com

	AC’97
	Analog Touch Screen
	Ethernet
	HDLC
	SDRAM Controller
	Raster
	IDE
	Reset
	Software Reset
	USB and DMA Arbitration
	I2S Audio
	MaverickCrunchTM

